Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-distance quantum communication with atomic ensembles and linear optics

Abstract

Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Set-up for entanglement generation.
Figure 2: Set-up for entanglement connection.
Figure 3: Set-up for entanglement-based communication schemes.

References

  1. 1

    Ekert, A. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  2. 2

    Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 73, 3081–3084 (1993).

    MathSciNet  MATH  Google Scholar 

  3. 3

    Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1991).

    ADS  Article  Google Scholar 

  4. 4

    Briegel, H.-J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Knill, E., Laflamme, R. & Zurek, W. H. Resilient quantum computation. Science 279, 342–345 (1998).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Preskill, J. Reliable quantum computers. Proc. R. Soc. Lond. A 454, 385–410 (1998).

    ADS  Article  Google Scholar 

  7. 7

    Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Enk, S. J., Cirac, J. I. & Zoller, P. Photonic channels for quantum communication. Science 279, 205–207 (1998).

    ADS  Article  Google Scholar 

  10. 10

    Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83, 4987–4990 (1999).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Hood, C. J. et al. The atom-cavity microscope: Single atoms bound in orbit by single photons. Science 287, 1447–1453 (2000).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Pinkse, P. W. H., Fischer, T., Maunz, T. P. & Rempe, G. Trapping an atom with single photons. Nature 404, 365–368 (2000).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Cabrillo, C., Cirac, J. I., G-Fernandez, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Bose, S., Knight, P. L., Plenio, M. B. & Vedral, V. Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158–5161 (1999).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Raymer, M. G., Walmsley, I. A., Mostowski, J. & Sobolewska, B. Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering. Phys. Rev. A 32, 332–344 (1985).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Kuzmich, A., Mölmer, K. & Polzik, E. S. Spin squeezing in an ensemble of atoms illuminated with squeezed light. Phys. Rev. Lett. 79, 481 (1998).

    Google Scholar 

  17. 17

    Kuzmich, A., Bigelow, N. P. & Mandel, L. Atomic quantum non-demolition measurements and squeezing. Europhys. Lett. A 42, 481–486 (1998).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Lukin, M. D., Yelin, S. F. & Fleischhauer, M. Entanglement of atomic ensembles by trapping correlated photon states. Phys. Rev. lett. 84, 4232–4235 (2000).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Duan, L. M., Cirac, J. I., Zoller, P. & Polzik, E. S. Quantum communication between atomic ensembles using coherent light. Phys. Rev. Lett. 85, 5643–5646 (2000).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Hald, J., Sorensen, J. L., Schori, C. & Polzik, E. S. Spin squeezed state: A macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1322 (1999).

    ADS  Article  Google Scholar 

  21. 21

    Phillips, D. F. et al. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Pan, J. W., Simon, C., Brukner, C. & Zeilinger, A. Feasible entanglement purification for quantum communication. Nature 410, 1067–1070 (2001).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Roch, J.-F. et al. Quantum nondemolition measurements using cold trapped atoms. Phys. Rev. Lett. 78, 634–637 (1997).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Lo, H. K. & Chau, H. F. Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Shor, P. W. & Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    ADS  Article  Google Scholar 

  29. 29

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Budker, D., Yashuk, V. & Zolotorev, M. Nonlinear magneto-optic effects with ultranarrow width. Phys. Rev. Lett. 81, 5788–5791 (1998).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Foundation, the Europe Union project EQUIP, the ESF, the European TMR network Quantum Information, and the NSF through a grant to the ITAMP and ITR program. L.-M.D. was also supported by the Chinese Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. I. Cirac.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duan, LM., Lukin, M., Cirac, J. et al. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001). https://doi.org/10.1038/35106500

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing