Long-distance quantum communication with atomic ensembles and linear optics

Article metrics

Abstract

Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Set-up for entanglement generation.
Figure 2: Set-up for entanglement connection.
Figure 3: Set-up for entanglement-based communication schemes.

References

  1. 1

    Ekert, A. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991).

  2. 2

    Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 73, 3081–3084 (1993).

  3. 3

    Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1991).

  4. 4

    Briegel, H.-J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  5. 5

    Knill, E., Laflamme, R. & Zurek, W. H. Resilient quantum computation. Science 279, 342–345 (1998).

  6. 6

    Preskill, J. Reliable quantum computers. Proc. R. Soc. Lond. A 454, 385–410 (1998).

  7. 7

    Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

  8. 8

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

  9. 9

    Enk, S. J., Cirac, J. I. & Zoller, P. Photonic channels for quantum communication. Science 279, 205–207 (1998).

  10. 10

    Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83, 4987–4990 (1999).

  11. 11

    Hood, C. J. et al. The atom-cavity microscope: Single atoms bound in orbit by single photons. Science 287, 1447–1453 (2000).

  12. 12

    Pinkse, P. W. H., Fischer, T., Maunz, T. P. & Rempe, G. Trapping an atom with single photons. Nature 404, 365–368 (2000).

  13. 13

    Cabrillo, C., Cirac, J. I., G-Fernandez, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999).

  14. 14

    Bose, S., Knight, P. L., Plenio, M. B. & Vedral, V. Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158–5161 (1999).

  15. 15

    Raymer, M. G., Walmsley, I. A., Mostowski, J. & Sobolewska, B. Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering. Phys. Rev. A 32, 332–344 (1985).

  16. 16

    Kuzmich, A., Mölmer, K. & Polzik, E. S. Spin squeezing in an ensemble of atoms illuminated with squeezed light. Phys. Rev. Lett. 79, 481 (1998).

  17. 17

    Kuzmich, A., Bigelow, N. P. & Mandel, L. Atomic quantum non-demolition measurements and squeezing. Europhys. Lett. A 42, 481–486 (1998).

  18. 18

    Lukin, M. D., Yelin, S. F. & Fleischhauer, M. Entanglement of atomic ensembles by trapping correlated photon states. Phys. Rev. lett. 84, 4232–4235 (2000).

  19. 19

    Duan, L. M., Cirac, J. I., Zoller, P. & Polzik, E. S. Quantum communication between atomic ensembles using coherent light. Phys. Rev. Lett. 85, 5643–5646 (2000).

  20. 20

    Hald, J., Sorensen, J. L., Schori, C. & Polzik, E. S. Spin squeezed state: A macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1322 (1999).

  21. 21

    Phillips, D. F. et al. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

  22. 22

    Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

  23. 23

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

  24. 24

    Pan, J. W., Simon, C., Brukner, C. & Zeilinger, A. Feasible entanglement purification for quantum communication. Nature 410, 1067–1070 (2001).

  25. 25

    Roch, J.-F. et al. Quantum nondemolition measurements using cold trapped atoms. Phys. Rev. Lett. 78, 634–637 (1997).

  26. 26

    Lo, H. K. & Chau, H. F. Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999).

  27. 27

    Shor, P. W. & Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000).

  28. 28

    Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

  29. 29

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

  30. 30

    Budker, D., Yashuk, V. & Zolotorev, M. Nonlinear magneto-optic effects with ultranarrow width. Phys. Rev. Lett. 81, 5788–5791 (1998).

Download references

Acknowledgements

This work was supported by the Austrian Science Foundation, the Europe Union project EQUIP, the ESF, the European TMR network Quantum Information, and the NSF through a grant to the ITAMP and ITR program. L.-M.D. was also supported by the Chinese Science Foundation.

Author information

Correspondence to J. I. Cirac.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duan, L., Lukin, M., Cirac, J. et al. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001) doi:10.1038/35106500

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.