Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Issues and challenges facing rechargeable lithium batteries

Abstract

Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison of the different battery technologies in terms of volumetric and gravimetric energy density.
Figure 2: Schematic representation and operating principles of Li batteries.
Figure 3: Schematic representations of polymer electrolyte networks.
Figure 4: Schematic drawing showing the shape and components of various Li-ion battery configurations.
Figure 5: Voltage versus capacity for positive- and negative-electrode materials presently used or under serious considerations for the next generation of rechargeable Li-based cells.
Figure 6: The crystal structure of olivine LiFePO4 in projection along [001].
Figure 7: Cycling behaviour at 55 °C of an optimized LiFePO4/C composite electrode (83% of active material) at a scan rate of C/10.
Figure 8: Arrhenius plot of conductivity for various solid electrolytes.

References

  1. 1

    Takeshita, H. Portable Li-ion,worldwide. Proc. Conf. Power 2000, San Diego, 25 September 2000.

  2. 2

    Ikeda, H., Saito, T. & Tamura, H. in Proc. Manganese Dioxide Symp. Vol. 1 (eds Kozawa, A. & Brodd, R. H.) (IC sample Office, Cleveland, OH, 1975).

    Google Scholar 

  3. 3

    Steele, B. C. H. in Fast Ion Transport in Solids (ed. Van Gool, W.) 103–109 (North-Holland Amsterdam, 1973).

    Google Scholar 

  4. 4

    Armand, M. B. in Fast Ion Transport in Solids (ed. Van Gool, W.) 665–673 (North-Holland Amsterdam, 1973).

    Google Scholar 

  5. 5

    Rouxel, J., Danot, M., & Bichon, M. Les composites intercalaires NaxTiS2. Etude gènérale des phases NaxTiS2 et KxTiS2 . Bull. Soc. Chim. 11, 3930–3936 (1971).

    Google Scholar 

  6. 6

    Di Salvo, F. J., Schwall, R., Geballe, T. H., Gamble, F. R. & Osieki, J. H. Precursor effects of superconductivity up to 35 °K in layered compounds. Phys. Rev. Lett. 27, 310–313 (1971).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Whittingham, M. S. Electrochemical energy storage and intercalation chemistry. Science 192, 1226 (1976).

    Article  Google Scholar 

  8. 8

    Whittingham, M. S. Chalcogenide battery. US Patent 4009052.

  9. 9

    Rao, B. M. L., Francis, R. W. & Christopher, H. A. Lithium-aluminium electrodes. J. Electrochem. Soc. 124, 1490–1492 (1977).

    CAS  Article  Google Scholar 

  10. 10

    Broahead, J. & Butherus, A.D. Rechargeable non-aqueous battery. US Patent 3791867.

  11. 11

    Broadhead, J., DiSalvo, F. J. & Trumbore, F. A. Non-aqueous battery using chalcogenide electrode. US Patent 3864167.

  12. 12

    Murphy, D. W. & Christian, P. A. Solid state electrodes for high energy batteries. Science 205, 651–656 (1979).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0<x†1): a new cathode material for batteries of high energy density. Mat. Res. Bull. 15, 783–789 (1980).

    CAS  Article  Google Scholar 

  14. 14

    Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Lithium insertion into manganese spinels. Mat. Res. Bull. 18, 461–472 (1983).

    CAS  Article  Google Scholar 

  15. 15

    Armand, M. B. in Materials for Advanced Batteries (Proc. NATO Symp. Materials Adv. Batteries) (eds Murphy, D. W., Broadhead, J. & Steele, B. C. H.) 145–161 (Plenum, New York, 1980).

    Book  Google Scholar 

  16. 16

    Murphy, D. W., DiSalvo, F. J., Carides, J. N. & Waszczak, J. V. Topochemical reactions of rutile related structures with lithium. Mat. Res. Bull. 13, 1395–1402 (1978).

    CAS  Article  Google Scholar 

  17. 17

    Lazzari, M. & Scrosati, B. A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc. 127, 773–774 (1980).

    CAS  Article  Google Scholar 

  18. 18

    Will, F. G. Hermetically sealed secondary battery with lanthanum nickel anode. US patent 3874958 (1975).

  19. 19

    Percheron-Guegan, A., Achard, J. C., Sarradin, J. & Bronoël, G. Alliages à base de Lanthane et de Nickel et leurs applications électrochimiques. French patent 7516160 (1975).

  20. 20

    Guérard, D. & Hérold, A. New method for the preparation of lithium insertion compounds in graphite. C.R. Acad. Sci. C 275, 571–572 (1972).

    Google Scholar 

  21. 21

    Basu, S. Ambient temperature rechargeable battery. US patent 4,423,125 (filing date, 13 September 1982; publication date, 27 Dec 1983).

  22. 22

    Mohri, M. et al. Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. J. Power Sources 26, 545–551 (1989).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Nagaura, T. & Tozawa, K. Lithium ion rechargeable battery. Prog. Batteries Solar Cells 9, 209 (1990).

    CAS  Google Scholar 

  24. 24

    Armand, M., Chabagno, J. M. & Duclot, M. J. in Fast Ion Transport in Solids Electrodes and Electrolytes (eds Vashishta, P., Mundy, J.-N. & Shenoy, G. K.) 131–136 (North-Holland, Amsterdam, 1979).

    Google Scholar 

  25. 25

    Kelly, I. E., Owen, J. R. & Steel, B. H. Poly(ethyleneoxide) electrolytes for operation at near room temperature. J. Power Sources 14, 13–21 (1985); Interfacial Electrochem. 168, 467 (1984).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Tarascon, J.-M., Gozdz, A. S., Schmutz, C., Shokoohi, F. & Warren, P. C. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ionics 86–88, 49–54 (1996).

    Article  Google Scholar 

  27. 27

    Guyomard, D. in New Trends in Electrochemical Technology: Energy Storage Systems for Electronics Vol. 9 (eds Osaka, T. & Datta, M.) 253–350 (Gordon & Breach Science Publishers, 2000).

    Google Scholar 

  28. 28

    Dahn, J. R., Von Sacken, U., Juzkow, M. W. & Al-Janaby, H. Rechargeable LiNiO2/carbon cells. J. Electrochem. Soc. 138, 2207–2211 (1991).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Yuan Gao, Yakovleva, M. V. & Ebner, W. B. Novel LiNi1-xTix/2Mgx/2O2 compounds as cathode materials for safer lithium-ion batteries. Electrochem. Solid State Lett. 1, 117–119 (1998).

    Google Scholar 

  30. 30

    Armstrong, A. R. & Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Ammundsen, B. et al. in Proc. Int. Symp. Electrochem. Soc. Vol. 99-24, 57–67 (ECS, Pennington, NJ, 2000).

    CAS  Google Scholar 

  32. 32

    Amatucci, G. G., Pereira, N., Zheng, T. & Tarascon, J.-M. Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-yFz solid solution. J. Electrochem. Soc. 148, A171–A182 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Amatucci, G. G., du Pasquier, A., Blyr, A., Zheng, T. & Tarascon, J.-M. The elevated temperature performance of the LiMn2O4/C system: failure and solutions. Electrochem. Acta 45, 255–271 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada S. & Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997).

    CAS  Article  Google Scholar 

  35. 35

    Ravet, N. et al. Improved iron-based cathode material. Abstr. No. 127, ECS Fall meeting, Hawaii, 1999.

  36. 36

    Morcrette, M., Wurm, C., Gaubicher, J. & Masquelier, C. Polyanionic structures as alternative materials for lithium batteries. Abstr. No. 93, Electrode Materials Meeting, Bordeaux Arcachon, 27 May–1 June 2001.

  37. 37

    Cava, R. J., Murphy, D. W. & Zahurak, S. M. Lithium insertion in Wadsley-Roth phases based on Niobium oxide. J. Electrochem. Soc. 30, 2345–2351 (1983).

    Article  Google Scholar 

  38. 38

    Delmas, C., Brethes, S. & Menetrier, M. LixV2O5-ω, un nouveau matèriau d'électrode pour accumulateur au lithium. CR Acad. Sci. 310, 1425–1430 (1990).

    ADS  CAS  Google Scholar 

  39. 39

    Le, D. B. et al. High surface area V2O5 aerogel intercalation electrodes. J. Electrochem. Soc. 143, 2099–2104 (1996).

    CAS  Article  Google Scholar 

  40. 40

    Dong, W., Rolison, D. R. & Dunn, B. Electrochemical properties of high surface area vanadium oxides aerogels. Electrochem. Solid State Lett. 3, 457–459 (2000).

    CAS  Article  Google Scholar 

  41. 41

    Visco, S. J. & de Jonghe, L. C. in Handbook of Solid-State Batteries and Capacitors (ed. Munshi, M. Z. A.) 515 (World Scientific, Singapore, 1995).

    Book  Google Scholar 

  42. 42

    Dahn, J. R. et al. Carbon and graphites as substitutes for the lithium anode. Industrial Chemistry Library Vol. 5 (ed. Pistoia, G.) (1994).

  43. 43

    Shodai, T., Okada, S., Tobishima, S. & Yamabi, I. Study of Li3-xMxN (M=Co, Ni or Cu) system for use as anode in lithium rechargeable cells. Solid State Ionics 86–88, 785–789 (1996).

    Article  Google Scholar 

  44. 44

    Winter, M. & Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochem. Acta 45, 31–50 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Anani, A., Crouch-Baker, S. & Huggins, R. A. Kinetics and thermodynamic parameters of several binary alloys negative electrode materials at ambient temperature. J. Electrochem. Soc. 134, 3098–3102 (1987).

    CAS  Article  Google Scholar 

  46. 46

    Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y. & Miyasaka, T. Tin-based amorphous oxide: a high capacity lithium-ion storage material. Science 276, 1395–1397 (1997).

    CAS  Article  Google Scholar 

  47. 47

    Courtney, I. A. & Dahn, J. R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045–2052 (1997).

    CAS  Article  Google Scholar 

  48. 48

    Mao, O., Dunlap, R. A. & Dahn, J. R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries. I. The Sn2Fe-C system. J. Electrochem. Soc. 146, 405–413 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Beaulieu, L. Y., Larcher, B., Dunlap, R. A. & Dahn, J. R. Reaction of Li with grain-boundary atoms in nano structured compounds. J. Electrochem. Soc. 147, 3206–3212 (2000).

    CAS  Article  Google Scholar 

  50. 50

    Kepler, K. D., Vaughey, J. T. & Thackeray, M. M. LixCu6Sn5 (0<x<13): an intermetallic insertion electrode for rechargeable lithium batteries. Electrochem. Solid State Lett. 2, 307 (1999).

    CAS  Article  Google Scholar 

  51. 51

    Idota, Y. et al. Nonaqueous battery. US Patent No. 5,478,671 (1995).

  52. 52

    Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon., J.-M. Nano-sized transition-metal oxides as negative-electrode material for lithium-ion batteries. Nature 407, 496–499 (2000).

    ADS  CAS  Article  Google Scholar 

  53. 53

    Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon., J.-M. Electrochemical reactivity and reversibility of cobalt oxides towards lithium. C.R. Acad. Sci. II 681–691 (2000).

  54. 54

    Dominey, L. A. Current state of the art on lithium battery electrolytes Industrial Chemistry Library Vol. 5 (ed. Pistoia, G.) 137–165 (1994).

    Google Scholar 

  55. 55

    Guyomard, D. & Tarascon, J. M. High voltage stable liquid electrolytes for Li1+xMn2O4/carbon rocking-chair lithium batteries. J. Power Sources 54, 92–98 (1995).

    ADS  CAS  Article  Google Scholar 

  56. 56

    Armand, M. The history of polymer electrolytes. Solid State Ionics 69, 309–319 (1994).

    CAS  Article  Google Scholar 

  57. 57

    Fenton, D. E., Parker, J. M. & Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973).

    CAS  Article  Google Scholar 

  58. 58

    Armand, M., Gorecki, W. & Andreani, R. in Second International Meeting on Polymer Electrolytes (ed. Scrosati, B.) 91–96 (Elsevier, London, 1989).

    Google Scholar 

  59. 59

    Fauteux, D. in Polymer Electrolytes Reviews II (eds MacCallum, J. R. & Vincent, C. A.) 212 (Elsevier, London, 1989).

    Google Scholar 

  60. 60

    Feuillade, G. & Perche, P. Ion conductive macromodular gels and membranes for solid lithium cells. J. Appl. Electrochem. 5, 63–69 (1975).

    CAS  Article  Google Scholar 

  61. 61

    Stallworth, P. E. et al. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes. J. Power Sources 81, 739–747 (1999).

    ADS  Article  Google Scholar 

  62. 62

    MacGlashan, G. S., Andreev, Y. G. & Bruce, P. Structure of the polymer electrolyte poly(ethylene oxide): LiAsF6 . Nature 398, 792–793 (1999).

    ADS  CAS  Article  Google Scholar 

  63. 63

    Zheng, Y., Chia, F., Ungar, G. & Wright, P. V. Self-tracking in solvent-free, low-dimensional polymer electrolyte blends with lithium salts giving high ambient DC conductivity. Chem. Commun. 16, 1459–1460 (2000).

    Article  Google Scholar 

  64. 64

    Imrie, C. T., Ingram, M. D. & McHattie, G. S. Ion transport in glassy polymer electrolytes. J. Phys. Chem. B 103, 4132–4138 (1999).

    CAS  Article  Google Scholar 

  65. 65

    Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    ADS  CAS  Article  Google Scholar 

  66. 66

    Sata, N., Eberman, K., Eberl, K. & Maier, J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408, 946–949 (2000).

    ADS  CAS  Article  Google Scholar 

  67. 67

    Aurbach, D. Review of selected electrode solution interactions which determine the performance of Li and Li-ion batteries. J. Power Sources 89, 206–218 (2000).

    ADS  CAS  Article  Google Scholar 

  68. 68

    Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin film lithium and lithium-ion batteries. Solid State Ionics 135, 33–45 (2000).

    CAS  Article  Google Scholar 

  69. 69

    Neudecker, B. J., Dudney, N. J. & Bates J. B Lithium-free thin film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517–523 (2000).

    CAS  Article  Google Scholar 

  70. 70

    Visco, S. J. The development of reversible lithium metal electrodes for advances Li/S batteries. Conf. Proc. Int. Meeting on Power Sources for Consumer and Industrial Applications, Hawaii, 3–6 September 2001.

  71. 71

    Orsini, F. et al. In situ SEM study of the interfaces in plastic lithium cells. J. Power Sources 81–82, 918–921 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues, both in academic institutions and industry, for sharing the gratifying dedication to this field of progress, and P. Rickman for help drawing the figures.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tarascon, JM., Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing