Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Haemoglobin C protects against clinical Plasmodium falciparum malaria

Abstract

Haemoglobin C (HbC; β6Glu → Lys) is common in malarious areas of West Africa, especially in Burkina Faso1,2. Conclusive evidence exists on the protective role against severe malaria of haemoglobin S (HbS; β6Glu → Val) heterozygosity3, whereas conflicting results for the HbC trait have been reported4,5,6,7,8,9,10 and no epidemiological data exist on the possible role of the HbCC genotype. In vitro studies suggested that HbCC erythrocytes fail to support the growth of P. falciparum11,12 but HbC homozygotes with high P. falciparum parasitaemias have been observed10. Here we show, in a large case–control study performed in Burkina Faso on 4,348 Mossi subjects, that HbC is associated with a 29% reduction in risk of clinical malaria in HbAC heterozygotes (P = 0.0008) and of 93% in HbCC homozygotes (P = 0.0011). These findings, together with the limited pathology of HbAC and HbCC13 compared to the severely disadvantaged HbSS and HbSC genotypes and the low βS gene frequency in the geographic epicentre of βC1,2,14, support the hypothesis that, in the long term and in the absence of malaria control, HbC would replace HbS in central West Africa.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Livingstone, F. B. Abnormal Hemoglobins in Human Populations (Aldine, Chicago, 1967).

    Google Scholar 

  2. 2

    Cavalli Sforza, L. L. & Bodmer, W. F. The Genetics of Human Populations (Freeman, San Francisco, 1971).

    Google Scholar 

  3. 3

    Hill, A. V. et al. Common West African HLA antigens are associated with protection from severe malaria. Nature 352, 595–600 (1991).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Thompson, G. R. Significance of Hemoglobin S and C in Ghana. Br. Med. J. 1, 682–685 (1962).

    CAS  Article  Google Scholar 

  5. 5

    Thompson, G. R. Malaria and stress in relation to Hemoglobins S and C. Br. Med. J. 2, 976–978 (1963).

    CAS  Article  Google Scholar 

  6. 6

    Ringelhann, B., Hathorn, M. K., Jilly, P., Grant, F. & Parniczky, G. A new look at the protection of hemoglobin AS and AC genotypes against Plasmodium falciparum infection: a census tract approach. Am. J. Hum. Genet. 28, 270–279 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Molineaux, L. & Gramiccia, G. The Garki Project. Research on the Epidemiology and Control of Malaria in the Sudan Savanna of West Africa (World Health Organization, Geneva, 1980).

    Google Scholar 

  8. 8

    Gilles, H. M. et al. Glucose-6-phosphate-dehydrogenase deficiency, sickling, and malaria in African children in South Western Nigeria. Lancet 1, 138–140 (1967).

    CAS  Article  Google Scholar 

  9. 9

    Guinet, F. et al. A comparison of the incidence of severe malaria in Malian children with normal and C-trait hemoglobin profiles. Acta Trop. 68, 175–182 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Agarwal, A. et al. Hemoglobin C associated with protection from severe malaria in the Dogon of Mali, a West African population with a low prevalence of hemoglobin S. Blood 96, 2358–2363 (2000).

    CAS  Google Scholar 

  11. 11

    Friedman, M. J., Roth, E. F., Nagel, R. L. & Trager, W. The role of hemoglobins C, S, and Nbalt in the inhibition of malaria parasite development in vitro. Am. J. Trop. Med. Hyg. 28, 777–780 (1979).

    CAS  Article  Google Scholar 

  12. 12

    Olson, J. A. & Nagel, R. L. Synchronized cultures of P. falciparum in abnormal red cells: the mechanism of the inhibition of growth in HbCC cells. Blood 67, 997–1001 (1986).

    CAS  PubMed  Google Scholar 

  13. 13

    Smith, E. W. & Krevans, J. R. Clinical manifestations of hemoglobin C disorders. Bull. Johns Hopkins Hosp. 104, 17–43 (1959).

    CAS  PubMed  Google Scholar 

  14. 14

    Labie, D., Richin, C., Pagnier, J., Gentilini, M. & Nagel, R. L. Hemoglobins S and C in Upper Volta. Hum. Genet. 65, 300–302 (1984).

    CAS  Article  Google Scholar 

  15. 15

    Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–304 (1976).

    CAS  Article  Google Scholar 

  16. 16

    Haldane, J. B. S. The rate of mutation of human genes. Hereditas 35 (suppl.), 267–273 (1949).

    Google Scholar 

  17. 17

    Flint, J. et al. High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature 321, 744–750 (1986).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Allen, S. J. et al. alpha+-Thalassemia protects children against disease caused by other infections as well as malaria. Proc. Natl Acad. Sci. USA 94, 14736–14741 (1997).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Pasvol, G., Weatherall, D. J. & Wilson, R. J. Cellular mechanism for the protective effect of haemoglobin S against P. falciparum malaria. Nature 274, 701–703 (1978).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Friedman, M. J. Erythrocytic mechanism of sickle cell resistance to malaria. Proc. Natl Acad. Sci. USA 75, 1994–1997 (1978).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Ruwende, C. et al. Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 376, 246–249 (1995).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Hutagalung, R. et al. Influence of hemoglobin E trait on the severity of Falciparum malaria. J. Infect. Dis. 179, 283–286 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Trabuchet, G. et al. Nucleotide sequence evidence of the unicentric origin of the βC mutation in Africa. Hum. Genet. 87, 597–601 (1991).

    CAS  Article  Google Scholar 

  24. 24

    Modiano, G., Battistuzzi, G. & Motulsky, A. G. Nonrandom patterns of codon usage and of nucleotide substitutions in human alpha- and beta-globin genes: an evolutionary strategy reducing the rate of mutations with drastic effects? Proc. Natl Acad. Sci. USA 78, 1110–1114 (1981).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Crow, J. F. The origins, patterns and implications of human spontaneous mutation. Nature Rev. Genet. 1, 40–47 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Sanchaisuriya, K. et al. Molecular characterization of hemoglobin C in Thailand. Am. J. Hematol. 67, 189–193 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Pagnier, J. et al. Evidence for the multicentric origin of the sickle cell hemoglobin gene in Africa. Proc. Natl Acad. Sci. USA 81, 1771–1773 (1984).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Kulozik, A. E. et al. Geographical survey of beta S-globin gene haplotypes: evidence for an independent Asian origin of the sickle-cell mutation. Am. J. Hum. Genet. 39, 239–244 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Antonarakis, S. E. et al. Evidence for multiple origins of the beta E-globin gene in Southeast Asia. Proc. Natl Acad. Sci. USA 79, 6608–6611 (1982).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Modiano, D. et al. Severe malaria in Burkina Faso: influence of age and transmission level on clinical presentation. Am. J. Trop. Med. Hyg. 59, 539–542 (1998).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank all the children in this study, and their parents and teachers, for their understanding and assistance. We thank the paediatric and laboratory staff of the Centre Hospitalier National Yalgado Quédraogo and of the Saint Camille Health Centre of Ouagadougou, Burkina Faso, for technical assistance. This work was based at the Centre National de Recherche et Formation sur le Paludisme of the Ministry of Health of Burkina Faso, co-sponsored by the Italian Cooperation (MAE-DGCS). Financial support was also provided by the European Community and by the Conferenza Episcopale Italiana.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Modiano.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Modiano, D., Luoni, G., Sirima, B. et al. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature 414, 305–308 (2001). https://doi.org/10.1038/35104556

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing