Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On-chip natural assembly of silicon photonic bandgap crystals

Abstract

Photonic bandgap crystals can reflect light for any direction of propagation in specific wavelength ranges1,2,3. This property, which can be used to confine, manipulate and guide photons, should allow the creation of all-optical integrated circuits. To achieve this goal, conventional semiconductor nanofabrication techniques have been adapted to make photonic crystals4,5,6,7,8,9. A potentially simpler and cheaper approach for creating three-dimensional periodic structures is the natural assembly of colloidal microspheres10,11,12,13,14,15. However, this approach yields irregular, polycrystalline photonic crystals that are difficult to incorporate into a device. More importantly, it leads to many structural defects that can destroy the photonic bandgap16,17. Here we show that by assembling a thin layer of colloidal spheres on a silicon substrate, we can obtain planar, single-crystalline silicon photonic crystals that have defect densities sufficiently low that the bandgap survives. As expected from theory, we observe unity reflectance in two crystalline directions of our photonic crystals around a wavelength of 1.3 micrometres. We also show that additional fabrication steps, intentional doping and patterning, can be performed, so demonstrating the potential for specific device applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Characterization of thin planar opal templates assembled directly on a Si wafer from 855-nm spheres.
Figure 2: SEM images of planar Si photonic crystals.
Figure 3: Comparison of optical results with calculations.
Figure 4: Doping and patterning Si photonic crystals.

References

  1. 1

    Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  CAS  Article  Google Scholar 

  3. 3

    John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Krauss, T. F., De La Rue, R. M. & Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Chow, E. et al. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature 407, 983–986 (2000).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Smith, C. J. M. et al. Low-loss channel waveguides with two-dimensional photonic crystal boundaries. Appl. Phys. Lett. 77, 2813–2815 (2000).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Lin, S. Y. et al. A three-dimensional photonic crystal operating at infrared wavelengths. Nature 394, 251–253 (1998).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Noda, S., Tomoda, K., Yamamoto, N. & Chutinan, A. Photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Astratov, V. N. et al. Optical spectroscopy of opal matrices with CdS embedded in its pores: quantum confinement and photonic band gap effects. Nuovo Cimento D 17, 1349–1354 (1995).

    ADS  Article  Google Scholar 

  11. 11

    Wijnhoven, J. E. G. J. & Vos, W. L. Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Vlasov, Y. A., Yao, N. & Norris, D. J. Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots. Adv. Mater. 11, 165–169 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Braun, P. V. & Wiltzius, P. Electrochemically grown photonic crystals. Nature 402, 603–604 (1999).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Müller, M., Zentel, R., Maka, T., Romanov, S. G. & Sotomayor-Torres, C. M. Photonic crystal films with high refractive index contrast. Adv. Mater. 12, 1499–1503 (2000).

    Article  Google Scholar 

  15. 15

    Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Vlasov, Y. A. et al. Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals. Phys. Rev. E 61, 5784–5793 (2000).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Li, Z.-Y. & Zhang, Z.-Q. Fragility of photonic band gaps in inverse-opal photonic crystals. Phys. Rev. B 62, 1516–1519 (2000).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Sözüer, H. S., Haus, J. W. & Inguva, R. Photonic bands: convergence problems with the plane-wave method. Phys. Rev. B 45, 13962–13972 (1992).

    ADS  Article  Google Scholar 

  19. 19

    Busch, K. & John, S. Photonic band gap formation in certain self-organizing systems. Phys. Rev. E 58, 3896–3908 (1998).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Denkov, N. D. et al. Two-dimensional crystallization. Nature 361, 26 (1993).

    ADS  Article  Google Scholar 

  21. 21

    van Blaaderen, A., Ruel, R. & Wiltzius, P. Template-directed colloidal crystallization. Nature 385, 321–324 (1997).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Jiang, P., Bertone, J. F., Hwang, K. S. & Colvin, V. L. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132–2140 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Amos, R. M., Rarity, J. G., Tapster, P. R., Shepherd, T. J. & Kitson, S. C. Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment. Phys. Rev. E 61, 2929–2935 (2000).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Kamins, T. Polycrystalline Silicon for Integrated Circuits and Displays 2nd edn, 10–22 (Kluwer, Boston, 1998).

    Book  Google Scholar 

  25. 25

    Vlasov, Y. A., Deutch, M. & Norris, D. J. Single domain spectroscopy of self-assembled photonic crystals. Appl. Phys. Lett. 76, 1627–1629 (2000).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Stefanou, N., Yannopapas, V. & Modinos, A. Heterostructures of photonic crystals: frequency bands and transmission coefficients. Comput. Phys. Commun. 113, 49–77 (1998).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Johnson, S. G. & Joannopoulos, J. D. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Opt. Express 8, 173–190 (2001).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Bell, P. M., Pendry, J. B., Martin-Moreno, L. & Ward, A. J. A program for calculating photonic band structures and transmission coefficients of complex structures. Comput. Phys. Commun. 85, 306–322 (1995).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Dushkin, C. D., Lazarov, G. S., Kotsev, S. N., Yoshimura, H. & Nagayama, K. Effect of growth conditions on the structure of two-dimensional latex crystals: experiment. Colloid Polym. Sci. 277, 914–930 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Ng, W. L. et al. An efficient room-temperature silicon-based light-emitting diode. Nature 410, 192–194 (2001).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Reynolds for providing transfer matrix computer code (Translight), P. Chaikin and S. Wagner for discussions, and N. Yao for experimental assistance. This work was partially supported by DARPA/ONR.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David J. Norris.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vlasov, Y., Bo, XZ., Sturm, J. et al. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001). https://doi.org/10.1038/35104529

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing