Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How many-particle interactions develop after ultrafast excitation of an electron–hole plasma


Electrostatic coupling between particles is important in many microscopic phenomena found in nature. The interaction between two isolated point charges is described by the bare Coulomb potential, but in many-body systems this interaction is modified as a result of the collective response of the screening cloud surrounding each charge carrier1,2. One such system involves ultrafast interactions between quasi-free electrons in semiconductors3,4—which are central to high-speed and future quantum electronic devices. The femtosecond kinetics of nonequilibrium Coulomb systems has been calculated using static5,6 and dynamical7,8 screening models that assume the instantaneous formation of interparticle correlations. However, some quantum kinetic theories9,10,11,12,13,14 suggest that a regime of unscreened bare Coulomb collisions might exist on ultrashort timescales. Here we monitor directly the temporal evolution of the charge–charge interactions after ultrafast excitation of an electron–hole plasma in GaAs. We show that the onset of collective behaviour such as Coulomb screening and plasmon scattering exhibits a distinct time delay of the order of the inverse plasma frequency, that is, several 10-14 seconds.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental principle.
Figure 2: Two-time dependent polarization response of the electron–hole plasma.
Figure 3: Build-up of Coulomb screening and plasmon scattering.


  1. Mahan, G. D. Many-Particle Physics 2nd edn (Plenum, New York, 1993).

    Google Scholar 

  2. Lindhard, J. On the properties of a gas of charged particles. Dan. Mat.-fys. Medd. 28, 2–57 (1954).

    MathSciNet  MATH  Google Scholar 

  3. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures 2nd edn (Springer, Berlin, 1999).

    Book  Google Scholar 

  4. Chemla, D. S. & Shah, J. Many-body and correlation effects in semiconductors. Nature 411, 549–557 (2001).

    Article  ADS  CAS  Google Scholar 

  5. Osman, M. A. & Ferry, D. K. Monte Carlo investigation of the electron–hole-interaction effects on the ultrafast relaxation of hot photoexcited carriers in GaAs. Phys. Rev. B 36, 6018–6032 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Goodnick, S. M. & Lugli, P. Effect of electron–electron scattering on nonequilibrium transport in quantum-well systems. Phys. Rev. B 37, 2578–2588 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Young, J. F., Henry, N. L. & Kelly, P. J. Full dynamical screening calculation of hot electron scattering rates in multicomponent semiconductor plasma. Solid State Electron. 32, 1567–1571 (1989).

    Article  ADS  Google Scholar 

  8. Collet, J. H. Dynamical screening in the cooling theory of high-density electron–hole plasmas. Phys. Rev. B 39, 7659–7665 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Haug, H. & Jauho, A.-P. Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 1996).

    Google Scholar 

  10. Hartmann, M., Stolz, H. & Zimmermann, R. Kinetics of screening in optically excited semiconductors. Phys. Status Solidi B 159, 35–42 (1990).

    Article  ADS  CAS  Google Scholar 

  11. El Sayed, K., Schuster, S., Haug, H., Herzel, F. & Henneberger, K. Subpicosecond plasmon response: Buildup of screening. Phys. Rev. B 49, 7337–7344 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Bányai, L., Vu, Q. T., Mieck, B. & Haug, H. Ultrafast quantum kinetics of time-dependent RPA-screened coulomb scattering. Phys. Rev. Lett. 81, 882–885 (1998).

    Article  ADS  Google Scholar 

  13. Kwong, N.-H. & Bonitz, M. Real-time Kadanoff-Baym approach to plasma oscillations in a correlated electron gas. Phys. Rev. Lett. 84, 1768–1771 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Vu, Q. T. & Haug, H. Time-dependent screening of the carrier–phonon and carrier–carrier interactions in non-equilibrium systems. Phys. Rev. B 62, 7179–7185 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Schöne, W.-D. & Ekardt, W. Time-dependent screening of a positive charge distribution in metals: Excitons on an ultrashort time scale. Phys. Rev. B 62, 13464–13471 (2000).

    Article  ADS  Google Scholar 

  16. Köhler, H. S. Memory and correlation effects in nuclear collisions. Phys. Rev. C 51, 3232–3239 (1995).

    Article  ADS  Google Scholar 

  17. Camescasse, F. X. et al. Ultrafast electron redistribution through Coulomb scattering in undoped GaAs: Experiment and theory. Phys. Rev. Lett. 77, 5429–5432 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Hügel, W. A. et al. Photon echoes from semiconductor band-to-band continuum transitions in the regime of Coulomb quantum kinetics. Phys. Rev. Lett. 83, 3313–3316 (1999).

    Article  ADS  Google Scholar 

  19. Bolton, S. R., Neukirch, U., Sham, L. J., Chemla, D. S. & Axt, V. M. Demonstration of sixth-order Coulomb correlations in a semiconductor single quantum well. Phys. Rev. Lett. 85, 2002–2005 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Vu, Q. T., Haug, H., Hügel, W. A., Chatterjee, S. & Wegener, M. Signature of electron-plasmon quantum kinetics in GaAs. Phys. Rev. Lett. 85, 3508–3511 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Bonitz, M., Lampin, J. F., Camescasse, F. X. & Alexandrou, A. Nonequilibrium plasmons in optically excited semiconductors. Phys. Rev. B 62, 15724–15734 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Spitzer, W. G. & Fan, H. Y. Determination of optical constants and carrier effective masses of semiconductors. Phys. Rev. 106, 882–890 (1957).

    Article  ADS  CAS  Google Scholar 

  23. Mooradian, A. & Wright, G. B. Observation of the interaction of plasmons with longitudinal optical phonons in GaAs. Phys. Rev. Lett. 16, 999–1001 (1966).

    Article  ADS  CAS  Google Scholar 

  24. Abstreiter, G., Cardona, M. & Pinczuk, A. Light scattering by free carrier excitations in semiconductors. Springer Topics Appl. Phys. 54, 5–150 (1984).

    Article  CAS  Google Scholar 

  25. Schall, M. & Jepsen, P. U. Photoexcited GaAs surfaces studied by transient terahertz time-domain spectroscopy. Opt. Lett. 25, 13–15 (2000).

    Article  ADS  CAS  Google Scholar 

  26. Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy. Phys. Rev. B 62, 15764–15777 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Ganikhanov, F., Burr, K. C., Hilton, D. J. & Tang, C. L. Femtosecond optical-pulse-induced absorption and refractive-index changes in GaAs in the midinfrared. Phys. Rev. B 60, 8890–8896 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Huber, R., Brodschelm, A., Tauser, F. & Leitenstorfer, A. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 76, 3191–3193 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Wu, Q. & Zhang, X.-C. Free-space electro-optic sampling of mid-infrared pulses. Appl. Phys. Lett. 71, 1285–1286 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M. C. & Knox, W. H. Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory. Appl. Phys. Lett. 74, 1516–1518 (1999).

    Article  ADS  CAS  Google Scholar 

  31. Fürst, C., Leitenstorfer, A., Laubereau, A. & Zimmermann, R. Quantum kinetic electron-phonon interaction in GaAs: Energy non-conserving scattering events and memory effects. Phys. Rev. Lett. 78, 3733–3736 (1997).

    Article  ADS  Google Scholar 

  32. Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors (Springer, Berlin, 1996).

    Book  Google Scholar 

Download references


We thank H. Haug, W. Kaiser, L. V. Keldysh and A. Laubereau for discussions and continuous support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. Leitenstorfer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huber, R., Tauser, F., Brodschelm, A. et al. How many-particle interactions develop after ultrafast excitation of an electron–hole plasma. Nature 414, 286–289 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing