Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Water-maser emission from a planetary nebula with a magnetized torus


A star like the Sun becomes a planetary nebula towards the end of its life, when the envelope ejected during the earlier giant phase becomes photoionized as the surface of the remnant star reaches a temperature of 30,000 K. The spherical symmetry of the giant phase is lost in the transition to a planetary nebula, when non-spherical shells and powerful jets develop. Molecules that were present in the giant envelope are progressively destroyed by the radiation1. The water-vapour masers that are typical of the giant envelopes2,3 therefore are not expected to persist in planetary nebulae1,4. Here we report the detection of water-maser emission from the planetary nebula K3-35. The masers are in a magnetized torus with a radius of about 85 astronomical units and are also found at the surprisingly large distance of about 5,000 astronomical units from the star, in the tips of bipolar lobes of gas. The precessing jets from K3-35 are probably involved in the excitation of the distant masers, although their existence is nevertheless puzzling. We infer that K3-35 is being observed at the very moment of its transformation from a giant star to a planetary nebula.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Water-maser and OH-maser emission in the young planetary nebula K3-35.
Figure 2: Spectra of the OH 1,665-MHz and 1,667-MHz lines in K3-35.


  1. Lewis, B M. The chronological sequence of circumstellar masers: identifying proto-planetary nebulae. Astrophys. J. 338, 234–243 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Elitzur, M. Astronomical masers. Annu. Rev. Astron. Astrophys. 30, 75–112 (1992).

    Article  ADS  Google Scholar 

  3. Habing, H. J. Circumstellar envelopes and asymptotic giant branch stars. Astron. Astrophys. Rev. 7, 97–207 (1996).

    Article  ADS  Google Scholar 

  4. Gómez, Y., Moran, J. M. & Rodríguez, L. F. H2O and SiO maser emission in OH/IR stars. Rev. Mex. Astron. Astrophys. 20, 55–66 (1990).

    ADS  Google Scholar 

  5. Aaquist, O. B. Detailed radio morphology of the compact nebula K3-35. Astron. Astrophys. 267, 260–264 (1993).

    ADS  Google Scholar 

  6. Miranda, L. F. et al. High-resolution spectroscopy and broad-band imaging of the young planetary nebula K3-35. Mon. Not. R. Astron. Soc. 311, 748–754 (2000).

    Article  ADS  Google Scholar 

  7. Zhang, C. Y. A statistical distance scale for galactic planetary nebulae. Astrophys. J. Suppl. Ser. 98, 659–678 (1995).

    Article  ADS  Google Scholar 

  8. Kohoutek, L. Hamburg Schmidt-camera survey of faint planetary nebulae. Bull. Astron. Inst. Czech. 16, 221–226 (1965).

    ADS  Google Scholar 

  9. Engels, D., Schmid-Burgk, J., Walmsley, C. M. & Winnberg, A. K3-35: planetary nebula or compact HII region? Astron. Astrophys. 148, 344–346 (1985).

    ADS  CAS  Google Scholar 

  10. Aaquist, O. B. & Kwok, S. Bipolar radio morphology in the compact nebula K3-35. Astron. Astrophys. 222, 227–230 (1989).

    ADS  Google Scholar 

  11. Dayal, A. & Bieging, J. H. Millimeter-wave observations of CO in planetary nebulae. Astrophys. J. 472, 703–710 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Acker, A. Interactive winds in low-mass evolved stars. Astrophys. Space Sci. 260, 185–198 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  13. Evans, I. N. & Dopita, M. A. Theoretical models for HII regions. I. Diagnostic diagrams. Astrophys. J. Suppl. Ser. 58, 125–142 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Raga, A. C., Böhm, K.-H. & Cantó, J. A compilation of optical spectrophotometry of HH objects and its tentative interpretation. Rev. Mex. Astron. Astrofis. 32, 161–174 (1996).

    ADS  CAS  Google Scholar 

  15. Pottasch, S. R. Planetary Nebulae (Reidel, Dordrecht, 1984).

    MATH  Google Scholar 

  16. Acker, A., Marcout, J., Ochsenbein, F., Stenholm, B. & Tylenda, R. Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (ESO, Garching, 1992).

    Google Scholar 

  17. Zijlstra, A. A. et al. OH maser emission from young planetary nebulae. Astron. Astrophys. 217, 157–178 (1989).

    ADS  CAS  Google Scholar 

  18. Spencer, J. H., Johnston, K. J., Moran, J. M., Reid, M. J. & Walker, R. C. The structure of H2O masers associated with late-type stars. Astrophys. J. 230, 449–455 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Marvel, K. B. The circumstellar environment of evolved stars as revealed by studies of circumstellar water masers. Publ. Astron. Soc. Pacif. 109, 1286–1287 (1997).

    Article  ADS  Google Scholar 

  20. Bowers, P. F. & Morris, M. The three-dimensional structure of a circumstellar maser. Astrophys. J. 276, 646–652 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Likkel, L. & Morris, M. The circumstellar water fountains of IRAS 16342-3814: a very high velocity bipolar outflow. Astrophys. J. 329, 914–919 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Marvel, K. B. & Boboltz, D. A. Observations of water masers associated with the proto-planetary nebula candidate IRAS 19296+2227. Astron. J. 118, 1791–1797 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Goldreich, P., Keeley, D. A. & Kwan, J. Y. Astrophysical masers II. Polarization properties. Astrophys. J. 179, 111–134 (1973).

    Article  ADS  Google Scholar 

  24. Cohen, R. J. Compact maser sources. Rep. Prog. Phys. 52, 881–943 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Blackman, E. G., Frank, A., Markiel, J. M., Thomas, J. H. & Van Horn, H. M. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae. Nature 409, 485–487 (2001).

    Article  ADS  CAS  Google Scholar 

  26. Hu, J. Y., Slijkhuis, S., Rieu, N.-Q. & de Jong, T. IRAS 17150-3224: a young, optically bipolar, proto-planetary nebula. Astron. Astrophys. 273, 185–193 (1993).

    ADS  CAS  Google Scholar 

  27. Rozyczka, M. & Franco, J. Toroidal magnetic fields and the evolution of wind-driven nebulae. Astrophys. J. 469, L127–L130 (1996).

    Article  ADS  Google Scholar 

  28. Elitzur, M., Hollenbach, D. J. & McKee, C. F. H2O masers in star-forming regions. Astrophys. J. 346, 983–990 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Zijlstra, A. et al. Bipolar outflows in OH/IR stars. Mon. Not. R. Astron. Soc. 322, 280–308 (2001).

    Article  ADS  CAS  Google Scholar 

  30. Elitzur, M., Hollenbach, D. J. & McKee, C. F. Planar H2O masers in star-forming regions. Astrophys. J. 394, 221–227 (1992).

    Article  ADS  Google Scholar 

Download references


We thank L. F. Rodríguez and P. Ho for comments. NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. G.A., L.F.M. and J.M.T. are supported partially by MCYT, Spain. Y.G. acknowledges support from DGAPA, UNAM and CONACyT, Mexico. G.A. acknowledges support from MEC, Spain.

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. F. Miranda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miranda, L., Gómez, Y., Anglada, G. et al. Water-maser emission from a planetary nebula with a magnetized torus. Nature 414, 284–286 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing