Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Improving plant breeding with exotic genetic libraries


Naturally occurring variation among wild relatives of cultivated crops is an under-exploited resource in plant breeding. Here, I argue that exotic libraries, which consist of marker-defined genomic regions taken from wild species and introgressed onto the background of elite crop lines, provide plant breeders with an important opportunity to improve the agricultural performance of modern crop varieties. These libraries can also act as reagents for the discovery and characterization of genes that underlie traits of agricultural value.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The central dogma of plant breeding.
Figure 2: Wild, hybrid and cultivated watermelons.
Figure 3: The Lycopersicon pennellii library.


  1. Khush, G. S. Green Revolution: the way forward. Nature Rev. Genet. 2, 815–822 (2001).

    CAS  Article  PubMed  Google Scholar 

  2. Peng, J. et al. 'Green Revolution' genes encode mutant gibberellin response modulators. Nature 400, 256–261 (1999).

    CAS  Article  PubMed  Google Scholar 

  3. Lev-Yadun, S., Gopher, A. & Abbo, S. Archaeology. The cradle of agriculture. Science 288, 1602–1603 (2000).

    CAS  Article  PubMed  Google Scholar 

  4. Ladizinsky, G. Plant Evolution under Domestication (Kluwer Academic, Dordrecht, The Netherlands, 1998).

    Book  Google Scholar 

  5. Jarret, R. L. & Newman, M. Phylogenetic relationships among species of Citrullus and the placement of C. rehmii De Winter as determined by internal transcribed spacer (ITS) sequence heterogeneity. Genet. Res. Crop Evol. 47, 215–222 (2000).

    Article  Google Scholar 

  6. Koornneef, M. & Stam, P. Changing paradigms in plant breeding. Plant Physiol. 125, 156–159 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bessey, C. E. Crop improvement by utilizing wild species. Am. Breed. Assoc. II, 112–118 (1906).

    Google Scholar 

  8. Fedak, G. Molecular aids for integration of alien chromatin through wide crosses. Genome 42, 584–591 (1999).

    CAS  Article  Google Scholar 

  9. Villareal, R. L., Del Toro, E., Mujeeb-Kazi, A. & Rajaram, S. The 1BL/1RS chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross. Plant Breed. 114, 497–500 (1995).

    Article  Google Scholar 

  10. Hoisington, D. et al. Plant genetic resources: what can they contribute toward increased crop productivity? Proc. Natl Acad. Sci. USA 96, 5937–5943 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Kovacs, M. I. P., Howes, N. K., Clarke, J. M. & Leisle, D. Quality characteristics of durum wheat lines deriving high protein from Triticum dicoccoides (6b) substitution. J. Cereal Sci. 27, 47–51 (1998).

    CAS  Article  Google Scholar 

  12. Pan, Q. et al. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155, 309–322 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rick, C. M. High soluble-solids content in large-fruited tomato lines derived from a wild green-fruited species. Hilgardia 42, 493–510 (1974).

    Article  Google Scholar 

  14. Ronen, G., Carmel-Goren, L., Zamir, D. & Hirschberg, J. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of β- and old-gold color mutations in tomato. Proc. Natl Acad. Sci. USA 97, 11102–11107 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Plunknett, D. L., Smith, N. J. H., Williams, J. T. & Murthi-Anishetty, N. Gene Banks and the World's Food (Princeton Univ. Press, Princeton, New Jersey, 1987).

    Google Scholar 

  16. Brar, D. S. & Khush, G. S. Alien introgression in rice. Plant Mol. Biol. 35, 35–47 (1997).

    CAS  Article  PubMed  Google Scholar 

  17. Moncada, P. et al. Quantitative trait loci for yield and yield components in an Oryza sativa x O. rufipogon BC2F2 population evaluated in an upland environment. Theor. Appl. Genet. 102, 41–52 (2001).

    CAS  Article  Google Scholar 

  18. Yano, M. Genetic and molecular dissection of naturally occurring variation. Curr. Opin. Plant Biol. 4, 130–135 (2001).

    CAS  Article  PubMed  Google Scholar 

  19. Singh, R. J. & Hymowitz, T. Soybean genetic resources and crop improvement. Genome 42, 605–616 (1999).

    CAS  Article  Google Scholar 

  20. Sebolt, A. M., Shoemaker, R. C. & Diers, B. W. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci. 40, 1438–1444 (2000).

    CAS  Article  Google Scholar 

  21. Small, R. L., Ryburn, J. A. & Wendel, J. F. Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Mol. Biol. Evol. 16, 491–501 (1999).

    CAS  Article  PubMed  Google Scholar 

  22. Iqbal, M. J., Reddy, O. U. K., El-Zik, K. M. & Pepper, A. E. A genetic bottleneck in the 'evolution under domestication' of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor. Appl. Genet. 103, 547–554 (2001).

    CAS  Article  Google Scholar 

  23. McCarty, J. C. & Percy, R. G. in Genetic Improvement of Cotton: Emerging Technologies (eds Jenkins, J. N. & Saha, S.) 65–79 (USDA — Agricultural Research Service: Science, Enfield, New Hampshire, 2001).

    Google Scholar 

  24. Doebley, J. & Stec, A. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134, 559–570 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, R. L., Stec, A., Hey, J., Lukens, L. & Doebley, J. The limits of selection during maize domestication. Nature 398, 236–239 (1999).

    CAS  Article  PubMed  Google Scholar 

  26. Mauricio, R. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nature Rev. Genet. 2, 370–381 (2001).

    CAS  Article  PubMed  Google Scholar 

  27. Ray, J. D., Kindiger, B. & Sinclair, T. R. Introgressing root aerenchyma into maize. Maydica 44, 113–117 (1999).

    Google Scholar 

  28. Tanksley, S. D. & McCouch, S. R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066 (1997).

    CAS  Article  PubMed  Google Scholar 

  29. Lee, M. Genome projects and gene pools: new germplasm for plant breeding? Proc. Natl Acad. Sci. USA 95, 2001–2004 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Fulton, T. M. et al. Advanced backcross QTL analysis of a Lycopersicon esculentum x L. parviflorum cross. Theor. Appl. Genet. 100, 1025–1042 (2000).

    CAS  Article  Google Scholar 

  31. Eshed, Y. & Zamir, D. Less than additive epistatic interactions of QTL in tomato. Genetics 143, 1807–1817 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuspira, J. & Unrau, J. Genetic analysis of certain characters in common wheat using all chromosome substitution lines. Can. J. Plant Sci. 37, 300–326 (1957).

    Article  Google Scholar 

  33. Eshed, Y. & Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141, 1147–1162 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fridman, E., Pleban, T. & Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl Acad. Sci. USA 97, 4718–4723 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Ramsay, L. D. et al. The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome 39, 558–567 (1996).

    CAS  Article  PubMed  Google Scholar 

  36. Young, N. D. A cautiously optimistic vision for marker-assisted breeding. Mol. Breed. 5, 505–510 (1999).

    Article  Google Scholar 

  37. Roessner, U. et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13, 11–29 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Gale, M. D. & Devos, K. M. Plant comparative genetics after 10 years. Science 282, 656–659 (1998).

    CAS  Article  PubMed  Google Scholar 

  39. Patterson, A. H. et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269, 1714–1717 (1995).

    Article  Google Scholar 

  40. Zhong, G. Y. Genetic issues and pitfalls in transgenic plant breeding. Euphytica 118, 137–144 (2001).

    CAS  Article  Google Scholar 

  41. Uzogara, S. G. The impact of genetic modification of human foods in the 21st century: a review. Biotechnol. Adv. 18, 179–206 (2000).

    CAS  Article  PubMed  Google Scholar 

  42. Mann, C. C. Crop scientists seek a new revolution. Science 283, 310–314 (1999).

    CAS  Article  Google Scholar 

  43. Acdemy, N. Transgenic Plants and World Agriculture (National Academy Press, Washington DC, 2000).

    Google Scholar 

  44. Mitten, D. H., MacDonald, R. & Klonus, D. Regulation of foods derived from genetically engineered crops. Curr. Opin. Biotechnol. 10, 298–302 (1999).

    CAS  Article  PubMed  Google Scholar 

  45. Kuiper, H. A., Kleter, G. A., Noteborn, H. P. J. M. & Kok, E. J. Assessment of food safety issues related to genetically modified foods. Plant J. 27, 503–528 (2001).

    CAS  Article  PubMed  Google Scholar 

Download references


I thank E. Fridman, Y. Eshed and S. Abbo for helpful discussions. This work was supported by the United States–Israel Binational Research and Development Fund (BARD).

Author information

Authors and Affiliations


Related links

Related links


Maize Database 



C. M. Rick Tomato Genetics Resource Center (TGRC)

Consultative group on international agricultural research

Encyclopedia of Life Sciences: Plant breeding and crop improvement

L. pennellii tomato introgression lines

Maize genome database

Map of L. pennellii introgression lines

Rice genome research program

The Solanaceae Genome Network



A sample of plant material that is collected at a specific location and maintained in a seed bank.


A variety that excels under conditions of modern intensive agriculture.


An interaction between non-allelic genes, such that one gene masks, interferes with or enhances the expression of the other gene.


Hybrid vigour that leads to superior crop varieties.


The incorporation of selected traits from an unadapted exotic resource through a succession of crosses (backcrosses) to a commercially elite variety.


A locally adapted, cultivated variety that is selected by farmers.


The collapse of top-heavy plants, particularly grain crops.


The accumulation of several independent traits in the same genotype through introgression breeding.


(QTL). Genetic loci that are identified through the statistical analysis of complex traits (such as plant height or body weight). Quantitative traits are typically affected by more than one gene and by the environment.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zamir, D. Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2, 983–989 (2001).

Download citation

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing