Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Milestones
  • Published:

Network dynamics and cell physiology

Key Points

  • The 'last step' of computational molecular biology is to derive the physiological properties of a cell from the wiring diagrams of the protein networks that embody all the capabilities of the cell.

  • These networks are intrinsically dynamical systems, driving the adaptive responses of a cell in space and time.

  • The behaviour of a dynamical system is fully determined by rate equations that specify how each network component will change in the next small increment of time.

  • These rate equations can be visualized as a 'vector field' in 'state space'.

  • A powerful tool for analysing the qualitative behaviour of dynamical systems is bifurcation theory, which tells us how the attractors of a vector field depend on parameter values.

  • For example, bifurcations drive the irreversible transitions of the eukaryotic cell cycle, as illustrated by the physiology of wild-type and mutant fission yeast.

  • To take the last step, from networks to physiology, will require serious collaboration between dynamical systems theorists and experimental molecular biologists.

Abstract

Complex assemblies of interacting proteins carry out most of the interesting jobs in a cell, such as metabolism, DNA synthesis, movement and information processing. These physiological properties play out as a subtle molecular dance, choreographed by underlying regulatory networks. To understand this dance, a new breed of theoretical molecular biologists reproduces these networks in computers and in the mathematical language of dynamical systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Computational molecular biology.
Figure 2: The cell-cycle control system in fission yeast.
Figure 3: Simulated time courses of cdc2 and related proteins during the cell cycle of fission yeast.
Figure 4: A vector field.
Figure 5: Bifurcation diagrams for the three control modules of the cell cycle.
Figure 6: Bifurcation diagram for the full cell-cycle control network.

References

  1. Osguthorpe, D. J. Ab initio protein folding. Curr. Opin. Struct. Biol. 10, 146–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Baker, D. & Sali, A. Protein structure predictions and structural genomics. Science 294, 93–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kollman, P. A. et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 33, 889–897 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, W., Donini, O., Reyes, C. M. & Kollman, P. A. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein–ligand, protein–protein, and protein–nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 30, 211–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Hu, X., Ritz, T., Damjanovic, A. & Schulten, K. Pigment organization and transfer of electronic excitation in the photosynthetic unit of purple bacteria. J. Phys. Chem. B 101, 3854–3871 (1997).

    Article  CAS  Google Scholar 

  6. Elston, T., Wang, H. & Oster, G. Energy transduction in ATP synthase. Nature 391, 510–513 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Chung, S.-H., Allen, T. W., Hoyles, M. & Kuyucak, S. Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys. J. 77, 2517–2533 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bray, D. Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995).This paper presents the case for protein networks as information-processing units in the cell.

    Article  CAS  PubMed  Google Scholar 

  9. Weinberg, R. A. The retinoblastoma protein and cell-cycle control. Cell 81, 323–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Planas-Silva, M. D. & Weinberg, R. A. The restriction point and control of cell proliferation. Curr. Opin. Cell Biol. 9, 768–772 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Kohn, K. W. Molecular interaction map of the mammalian cell-cycle control and DNA repair systems. Mol. Biol. Cell 10, 2703–2734 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hasty, J., McMillen, D., Isaacs, F. & Collins, J. J. Computational studies of gene regulatory networks: in numero molecular biology. Nature Rev. Genet. 2, 268–279 (2001).An excellent, comprehensive review of modelling genetic regulatory systems.

    Article  CAS  PubMed  Google Scholar 

  14. Meinhardt, H. Hierarchical inductions of cell states: a model for segmentation in Drosophila. J. Cell Sci. (Suppl.) 4, 357–381 (1986).

    Article  CAS  Google Scholar 

  15. Reinitz, J., Mjolsness, E. & Sharp, D. H. Model for cooperative control of positional information in Drosophila by bicoid and maternal hunchback. J. Exp. Zool. 271, 47–56 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. McAdams, H. H. & Shapiro, L. Circuit simulation of genetic networks. Science 269, 650–656 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Von Dassow, G., Meir, E., Munro, E. M. & Odell, G. M. The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Sanchez, L. & Thieffry, D. A logical analysis of the Drosophila gap–gene system. J. Theor. Biol. 211, 115–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Tyson, J. J. & Murray, J. D. Cyclic AMP waves during aggregation of Dictyostelium amoebae. Development 106, 421–426 (1989).

    CAS  PubMed  Google Scholar 

  20. Dupont, G. & Goldbeter, A. Oscillations and waves of cytosolic calcium: insights from theoretical models. BioEssays 14, 485–493 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Gerhardt, M., Schuster, H. & Tyson, J. J. A cellular automaton model of excitable media. Science 247, 1563–1566 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Markus, M. & Hess, B. Isotropic cellular automaton for modelling excitable media. Nature 347, 56–58 (1990).

    Article  CAS  Google Scholar 

  23. Smolen, P., Baxter, D. A. & Byrne, J. H. Modeling circadian oscillations with interlocking positive and negative feedback loops. J. Neurosci. 21, 6644–6656 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lema, M. A., Golombek, D. A. & Echave, J. Delay model of the circadian pacemaker. J. Theor. Biol. 204, 565–574 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Mackey, M. C. in Case Studies in Mathmatical Modelling (eds Othmer, H. G., Adler, F. R., Lewis, M. A. & Dallon, J. C.) 149–178 (Prentice Hall, New Jersey, 1997).

    Google Scholar 

  26. Wilson, H. R. & Cowan, J. D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. Ermentrout, G. B. & Cowan, J. D. A mathematical theory of visual hallucination patterns. Biol. Cybernet. 34, 137–150 (1979).

    Article  CAS  Google Scholar 

  28. Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. McAdams, H. H. & Arkin, A. It's a noisy business. Trends Genet. 15, 65–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Jacquez, J. A. Compartmental Analysis in Biology and Medicine (Elsevier Science, Amsterdam, 1972).

    Google Scholar 

  31. Tyson, J. J., Novak, B., Odell, G. M., Chen, K. & Thron, C. D. Chemical kinetic theory as a tool for understanding the regulation of M-phase promoting factor in the cell cycle. Trends Biochem. Sci. 21, 89–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Tyson, J. J. & Novak, B. Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis and irreversible transitions. J. Theor. Biol. 210, 249–263 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Kaplan, D. & Glass, L. Understanding Nonlinear Dynamics (Springer, New York, 1995).

    Book  Google Scholar 

  34. Strogatz, S. H. Nonlinear Dynamics and Chaos (Addison-Wesley Co., Reading, Massachusetts, 1994).

    Google Scholar 

  35. Tyson, J. J., Novak, B., Chen, K. C. & Val, J. in Progress in Cell Cycle Research (eds Meijer, L., Guidet, S. & Tung, H. Y. L.) 1–8 (Plenum, New York, 1995).

    Book  Google Scholar 

  36. Thron, C. D. Bistable biochemical switching and the control of the events of the cell cycle. Oncogene 15, 317–325 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Novak, B. & Tyson, J. J. Quantitative analysis of a molecular model of mitotic control in fission yeast. J. Theor. Biol. 173, 283–305 (1995).

    Article  CAS  Google Scholar 

  38. Fantes, P. A. Control of cell size and cycle time in Schizosaccharomyces pombe. J. Cell Sci. 24, 51–67 (1977).

    CAS  PubMed  Google Scholar 

  39. Russell, P. & Nurse, P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45, 145–153 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Russell, P. & Nurse, P. Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49, 559–567 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Nurse, P. Universal control mechanism regulating onset of M phase. Nature 344, 503–508 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Goldbeter, A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl Acad. Sci. USA 88, 9107–9111 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stern, B. & Nurse, P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet. 12, 345–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Fantes, P. & Nurse, P. Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp. Cell Res. 107, 377–386 (1977).

    Article  CAS  PubMed  Google Scholar 

  45. Sveiczer, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J. J. & Novak, B. Modeling the fission yeast cell cycle: quantized cycle times in wee1cdc25Δ mutant cells. Proc. Natl Acad. Sci. USA 97, 7865–7870 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nurse, P. Genetic control of cell size at cell division in yeast. Nature 256, 547–551 (1975).

    Article  CAS  PubMed  Google Scholar 

  47. Moreno, S. & Nurse, P. Regulation of progression through the G1 phase of the cell cycle by the rum1+ gene. Nature 367, 236–242 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Novak, B. & Tyson, J. J. Modeling the control of DNA replication in fission yeast. Proc. Natl Acad. Sci. USA 94, 9147–9152 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cross, F. R., Archambault, V., Miller, M. & Klovstad, M. Testing a mathematical model for the yeast cell cycle. Mol. Biol. Cell (in the press).

  50. Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Rhind, N. & Russell, P. Mitotic DNA damage and replication checkpoints in yeast. Curr. Opin. Cell Biol. 10, 749–758 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Furnari, B., Rhind, N. & Russell, P. Cdc25 mitotic inducer targeted by Chk1 DNA damage checkpoint kinase. Science 277, 1495–1497 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Rhind, N. & Russell, P. Roles of the mitotic inhibitors Wee1 and Mik1 in the G2 DNA damage and replication checkpoints. Mol. Cell. Biol. 21, 1499–1508 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nurse, P. & Thuriaux, P. Controls over the timing of DNA replication during the cell cycle of fission yeast. Exp. Cell Res. 107, 365–375 (1977).

    Article  CAS  PubMed  Google Scholar 

  55. Segel, L. A. Mathematical Models in Molecular and Cellular Biology (Cambridge Univ. Press, Cambridge, 1980).

    Google Scholar 

  56. Goldbeter, A. Biochemical Oscillations and Cellular Rhythms (Cambridge Univ. Press, Cambridge, 1996).

    Book  Google Scholar 

  57. Keener, J. & Sneyd, J. Mathematical Physiology (Springer, New York, 1998).

    Google Scholar 

  58. Fall, C. P., Marland, E., Wagner, J. M. & Tyson, J. J. Computational Cell Biology (Springer, New York, 2002).

    Google Scholar 

  59. Fraser, S. E. & Harland, R. M. The molecular metamorphosis of experimental embryology. Cell 100, 41–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Nurse, P. A long twentieth century of the cell cycle and beyond. Cell 100, 71–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).This paper makes a case for modularity in molecular regulatory systems.

    Article  CAS  PubMed  Google Scholar 

  62. Butler, D. Computing 2010: from black holes to biology. Nature 402, C67–C70 (1999).

  63. Novak, B., Pataki, Z., Ciliberto, A. & Tyson, J. J. Mathematical model of the cell division cycle of fission yeast. Chaos 11, 277–286 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Benito, J., Martin-Castellanos, C. & Moreno, S. Regulation of the G1 phase of the cell cycle by periodic stabilization and degradation of the p25rum1 CDK inhibitor. EMBO J. 17, 482–497 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Blanco, M. A., Sanchez-Diaz, A., De Prada, J. M. & Moreno, S. APC (ste9/srw1) promotes degradation of mitotic cyclins in G1 and is inhibited by cdc2 phosphorylation. EMBO J. 19, 3945–3955 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamaguchi, S., Okayama, H. & Nurse, P. Fission yeast Fizzy-related protein srw1p is a G1-specific promoter of mitotic cyclin B degradation. EMBO J. 19, 3968–3977 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aligue, R., Wu, L. & Russell, P. Regulation of Schizosaccharomyces pombe Wee1 tyrosine kinase. J. Biol. Chem. 272, 13320–13325 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Millar, J. B. A. & Russell, P. The cdc25 M-phase inducer: an unconventional protein phosphatase. Cell 68, 407–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Hyver, C. & Le Guyader, H. MPF and cyclin — modeling of the cell-cycle minimum oscillator. Biosystems 24, 85–90 (1990).

    Article  CAS  PubMed  Google Scholar 

  70. Norel, R. & Agur, Z. A model for the adjustment of the mitotic clock by cyclin and MPF levels. Science 251, 1076–1078 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Tyson, J. J. Modeling the cell division cycle: cdc2 and cyclin interactions. Proc. Natl Acad. Sci. USA 88, 7328–7332 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Novak, B. & Tyson, J. J. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106, 1153–1168 (1993).The first comprehensive model of cell-cycle regulation, carefully compared with experiments on intact frog embryos and cell-free egg extracts.

    CAS  PubMed  Google Scholar 

  73. Marlovits, G., Tyson, C. J., Novak, B. & Tyson, J. J. Modeling M-phase control in Xenopus oocyte extracts: the surveillance mechanism for unreplicated DNA. Biophys. Chem. 72, 169–184 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Borisuk, M. T. & Tyson, J. J. Bifurcation analysis of a model of mitotic control in frog eggs. J. Theor. Biol. 195, 69–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Novak, B., Csikasz-Nagy, A., Gyorffy, B., Chen, K. & Tyson, J. J. Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophys. Chem. 72, 185–200 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, K. C. et al. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11, 369–391 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Obeyesekere, M. N., Herbert, J. R. & Zimmerman, S. O. A model of the G1 phase of the cell cycle incorporating cyclinE/cdk2 complex and retinoblastoma protein. Oncogene 11, 1199–1205 (1995).

    CAS  PubMed  Google Scholar 

  78. Hatzimanikatis, V., Lee, K. H. & Bailey, J. E. A mathematical description of regulation of the G1–S transition of the mammalian cell cycle. Biotechnol. Bioeng. 65, 631–637 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Aguda, B. D. & Tang, Y. The kinetic origins of the restriction point in the mammalian cell cycle. Cell Prolif. 32, 321–335 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Fell, D. A. Understanding the Control of Metabolism (Portland, London, 1996).

    Google Scholar 

  81. Schilling, C. H. & Palsson, B. O. Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J. Theor. Biol. 203, 249–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Teusink, B. et al. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267, 5313–5329 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Martiel, J. L. & Goldbeter, A. A model based on receptor desensitiztion for cyclic-AMP signaling in Dictyostelium cells. Biophys. J. 52, 808–828 (1987).

    Article  Google Scholar 

  84. De Young, G. W. & Keizer, J. A single-pool inositol 1,4,5-triphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc. Natl Acad. Sci. USA 89, 9895–9899 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mahaffy, J. & Zyskind, J. A model for initiation of replication in Escherichia coli. J. Theor. Biol. 140, 453–477 (1989).

    Article  CAS  PubMed  Google Scholar 

  86. Bray, D., Bourret, R. B. & Simon, M. I. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol. Biol. Cell 4, 469–482 (1993).A trend-setting analysis of the molecular machinery that controls bacterial locomotion. Computer simulations reproduce the behaviour of more than 30 mutants in which components of the network are deleted or overexpressed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Meinhardt, H. & De Boer, P. A. Pattern formation in Escherichia coli: a model for the pole-to-pole oscillation of MIN proteins and the localization of the division site. Proc. Natl Acad. Sci. USA (in the press).

  88. Bertram, R., Butte, M. J., Kiemel, T. & Sherman, A. Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57, 413–439 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Izhikevich, E. M. Synchronization of elliptic bursters. Soc. Ind. Appl. Math. Rev. 43, 315–344 (2001).

    Google Scholar 

  90. Segel, L. A., Goldbeter, A., Devreotes, P. N. & Knox, B. E. A mechanism for exact sensory adaptation based on receptor modification. J. Theor. Biol. 120, 151–179 (1986).

    Article  CAS  PubMed  Google Scholar 

  91. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Peskin, C. S., Odell, G. M. & Oster, G. F. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65, 316–324 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gueron, S. & Levit-Gurevich, K. A three-dimensional model for ciliary motion based on the internal 9+2 structure. Proc. R. Soc. Lond. B 268, 599–607 (2001).

    Article  CAS  Google Scholar 

  94. Endy, D., You, L., Yin, J. & Molineux, I. J. Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes. Proc. Natl Acad. Sci. USA 97, 5375–5380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goldbeter, A. A model for circadian oscillations in Drosophila period protein (PER). Proc. R. Soc. Lond. B 261, 319–324 (1995).

    Article  CAS  Google Scholar 

  96. Leloup, J. C. & Goldbeter, A. A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J. Biol. Rhythms 13, 70–87 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Tyson, J. J., Hong, C. I., Thron, C. D. & Novak, B. A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys. J. 77, 2411–2417 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sharp, D. H. & Reinitz, J. Prediction of mutant expression patterns using gene circuits. Biosystems 47, 79–90 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Savageau, M. A. Design of molecular control mechanisms and the demand for gene expression. Proc. Natl Acad. Sci. USA 74, 5647–5651 (1977).An early and excellent application of dynamical reasoning to bacterial cell physiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Keller, A. D. Model genetic circuits encoding autoregulatory transcription factors. J. Theor. Biol. 172, 169–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).A genetic network, artificially engineered in bacteria, confirms the predictions of mathematical models.

    Article  CAS  PubMed  Google Scholar 

  102. Goodwin, B. C. An entrainment model for timed enzyme synthesis in bacteria. Nature 209, 479–481 (1966).

    Article  CAS  PubMed  Google Scholar 

  103. Bliss, R. D., Painter, R. P. & Marr, A. G. Role of feedback inhibition in stabilizing the classical operon. J. Theor. Biol. 97, 177–193 (1982).

    Article  CAS  PubMed  Google Scholar 

  104. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Levchenko, A., Bruck, J. & Sternberg, P. W. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl Acad. Sci. USA 97, 5818–5823 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ferrell, J. E. Jr. & Xiong, W. Bistability in cell signaling: how to make continuous processes discontinuous and reversible processes irreversible. Chaos 11, 227–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Asthagiri, A. R. & Lauffenburger, D. A. A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol. Prog. 17, 227–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Fussenegger, M., Bailey, J. E. & Varner, J. A mathematical model of caspase function in apoptosis. Nature Biotechnol. 18, 768–774 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our work on cell-cycle modelling has been supported by the National Science Foundations of the United States and Hungary. We are deeply grateful to P. Nurse for introducing us to the molecular mechanisms of cell-cycle regulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Tyson.

Related links

Related links

DATABASES

Saccharomyces Genome Database:

cdc2

cdc13

cdc25

CDC28

slp1

ste9

wee1

FURTHER INFORMATION

Berkeley Madonna

Cell cycle

E-CELL

GEPASI

Kohn's interaction maps

Milestones in cell division

Molecular wiring diagrams

Novak lab

Virtual Cell

XPPAUT

Yeast proteome database

Glossary

CYCLIN-DEPENDENT KINASE

An enzyme phosphorylating target proteins that are involved in DNA synthesis and mitosis. It requires a cyclin partner for activity and substrate specificity.

B-TYPE CYCLIN

A family of cyclin proteins that is required for mitosis. In fission yeast and some organisms, B-type cyclins drive DNA synthesis as well.

UBIQUITYLATION

The labelling of proteins for destruction by covalent attachment to a small protein, ubiquitin.

ANAPHASE-PROMOTING COMPLEX

An enzymatic complex that labels specific target proteins for degradation. It often works in conjunction with partners (slp1 and ste9, for example) that provide substrate specificity.

DYNAMICAL SYSTEM

A collection of components (for example, genes, proteins and metabolites) the properties of which change in time of response to interactions among the components and influences from outside the system.

STATE (SPACE)

The set of numbers that quantify each component (state variable) of a dynamical system. If there are n components, then the state can be represented by a point in an n-dimensional state space.

VECTOR FIELD

Assigned to each point in state space is a vector that specifies the magnitude and direction in which the state variables are changing.

STABLE (UNSTABLE)

Refers to steady states or limit cycles that attract (repel) nearby orbits.

STEADY STATE

A point in state space where the vector field vanishes (that is, a point that does not move).

SADDLE POINT

A steady state that attracts some nearby orbits and repels others.

ORBIT

A path through state space, traversed over time, as a dynamical system follows the underlying vector field from an initial state to a final state.

CHECKPOINT

A waiting state of the cell-cycle control system, induced by specific conditions such as DNA damage or spindle abnormalities.

BIFURCATION

A combination of parameter values at which something unusual happens to the attractors of a dynamical system; for example, two steady states annihilate each other, or a stable steady state gives way to a stable limit cycle.

PARAMETER (SPACE)

A number (for example, rate constant or binding constant) that influences the rates of change of state variables. The set of all parameters entailed by a dynamical system can be represented by a point in a p-dimensional parameter space.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyson, J., Chen, K. & Novak, B. Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2, 908–916 (2001). https://doi.org/10.1038/35103078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35103078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing