Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic tracing reveals a stereotyped sensory map in the olfactory cortex

A Retraction to this article was published on 06 March 2008

Abstract

The olfactory system translates myriad chemical structures into diverse odour perceptions. To gain insight into how this is accomplished, we prepared mice that coexpressed a transneuronal tracer with only one of about 1,000 different odorant receptors. The tracer travelled from nasal neurons expressing that receptor to the olfactory bulb and then to the olfactory cortex, allowing visualization of cortical neurons that receive input from a particular odorant receptor. These studies revealed a stereotyped sensory map in the olfactory cortex in which signals from a particular receptor are targeted to specific clusters of neurons. Inputs from different receptors overlap spatially and could be combined in single neurons, potentially allowing for an integration of the components of an odorant's combinatorial receptor code. Signals from the same receptor are targeted to multiple olfactory cortical areas, permitting the parallel, and perhaps differential, processing of inputs from a single receptor before delivery to the neocortex and limbic system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene targeting strategy used to coexpress barley lectin (BL) with the M5 or M50 odorant receptor gene.
Figure 2: Detection of BL in the nose and olfactory bulb.
Figure 3: BL-labelled neurons in the anterior piriform cortex of M5BL and M50BL mice.
Figure 4: Locations of labelled neurons in the anterior piriform cortex.
Figure 5: BL-labelled neurons in other olfactory cortical areas.
Figure 6: Transformations of odorant receptor inputs in the nervous system.

Similar content being viewed by others

References

  1. Kandel, E., Schwartz, J. & Jessell, T. Principles of Neural Science 625–647 (McGraw-Hill, New York, 2000).

    Google Scholar 

  2. Zigmond, M., Bloom, F., Landis, S., Roberts, J. & Squire, L. Fundamental Neural Science 737–753 (Academic, San Diego, 1999).

    Google Scholar 

  3. Buck, L. B. The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611–618 (2000).

    CAS  PubMed  Google Scholar 

  4. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    CAS  PubMed  Google Scholar 

  5. Mombaerts, P. Molecular biology of odorant receptors in vertebrates. Annu. Rev. Neurosci. 22, 487–509 (1999).

    CAS  PubMed  Google Scholar 

  6. Scott, J. W. The olfactory bulb and central pathways. Experientia 42, 223–232 (1986).

    CAS  PubMed  Google Scholar 

  7. Price, J. L. in Neurobiology of Taste and Smell (eds Finger, T. E. & Sliver, W. L.) 179–203 (Wiley, New York, 1987).

    Google Scholar 

  8. Shipley, M. T. & Ennis, M. Functional organization of olfactory system. J. Neurobiol. 30, 123–176 (1996).

    CAS  PubMed  Google Scholar 

  9. Haberly, L. B. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 377–416 (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  10. Ressler, K. J., Sullivan, S. L. & Buck, L. B. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73, 597–609 (1993).

    CAS  PubMed  Google Scholar 

  11. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    CAS  PubMed  Google Scholar 

  12. Vassar, R., Ngai, J. & Axel, R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74, 309–318 (1993).

    CAS  PubMed  Google Scholar 

  13. Ressler, K. J., Sullivan, S. L. & Buck, L. B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255 (1994).

    CAS  PubMed  Google Scholar 

  14. Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    CAS  PubMed  Google Scholar 

  15. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    CAS  PubMed  Google Scholar 

  16. Kauer, J. S., Senseman, D. M. & Cohen, L. B. Odor-elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage-sensitive dye. Brain Res. 418, 255–261 (1987).

    CAS  PubMed  Google Scholar 

  17. Katoh, K., Koshimoto, H., Tani, A. & Mori, K. Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds. J. Neurophysiol. 70, 2161–2175 (1993).

    CAS  PubMed  Google Scholar 

  18. Rubin, B. D. & Katz, L. C. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511 (1999).

    CAS  PubMed  Google Scholar 

  19. Uchida, N., Takahashi, Y. K., Tanifuji, M. & Mori, K. Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nature Neurosci. 3, 1035–1043 (2000).

    CAS  PubMed  Google Scholar 

  20. Buck, L. B. Information coding in the vertebrate olfactory system. Annu. Rev. Neurosci. 19, 517–544 (1996).

    CAS  PubMed  Google Scholar 

  21. Hildebrand, J. G. & Shepherd, G. M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595–631 (1997).

    CAS  PubMed  Google Scholar 

  22. Mori, K., Nagao, H. & Yoshihara, Y. The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715 (1999).

    CAS  PubMed  Google Scholar 

  23. Luskin, M. B. & Price, J. L. The distribution of axon collaterals from the olfactory bulb and the nucleus of the horizontal limb of the diagonal band to the olfactory cortex, demonstrated by double retrograde labeling techniques. J. Comp. Neurol. 209, 249–263 (1982).

    CAS  PubMed  Google Scholar 

  24. Haberly, L. B. & Price, J. L. The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat. Brain Res. 129, 152–157 (1977).

    CAS  PubMed  Google Scholar 

  25. Scott, J. W., McBride, R. L. & Schneider, S. P. The organization of projections from the olfactory bulb to the piriform cortex and olfactory tubercle in the rat. J. Comp. Neurol. 194, 519–534 (1980).

    CAS  PubMed  Google Scholar 

  26. Ojima, H., Mori, K. & Kishi, K. The trajectory of mitral cell axons in the rabbit olfactory cortex revealed by intracellular HRP injection. J. Comp. Neurol. 230, 77–87 (1984).

    CAS  PubMed  Google Scholar 

  27. Buonviso, N., Revial, M. F. & Jourdan, F. The projections of mitral cells from small local regions of the bulb: an anterograde tracing study using PHA-L (Phaseoulus vulgaris leucoagglutinin). Eur. J. Neurosci. 3, 493–500 (1991).

    PubMed  Google Scholar 

  28. Horowitz, L. F., Montmayeur, J. P., Echelard, Y. & Buck, L. B. A genetic approach to trace neural circuits. Proc. Natl Acad. Sci. USA 96, 3194–3199 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoshihara, Y. et al. A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22, 33–41 (1999).

    CAS  PubMed  Google Scholar 

  30. Wang, F., Nemes, A., Mendelsohn, M. & Axel, R. Odorant receptors govern the formation of a precise topographic map. Cell 93, 47–60 (1998).

    CAS  PubMed  Google Scholar 

  31. Sullivan, S. L., Adamson, M. C., Ressler, K. J., Kozak, C. A. & Buck, L. B. The chromosomal distribution of mouse odorant receptor genes. Proc. Natl Acad. Sci. USA 93, 884–888 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shepherd, G. M. & Greer, C. A. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 159–203 (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  33. Allison, A. C. The structure of the olfactory bulb and its relationship to the olfactory pathways in the rabbit and the rat. J. Comp. Neurol. 98, 309–353 (1953).

    CAS  PubMed  Google Scholar 

  34. Royet, J., Distel, H., Hudson, R. & Gervais, R. A re-estimation of the number of glomeruli and mitral cells in the olfactory bulb of rabbit. Brain Res. 788, 35–42 (1998).

    CAS  PubMed  Google Scholar 

  35. Risold, P. Y., Thompson, R. H. & Swanson, L. W. The structural organization of connections between hypothalamus and cerebral cortex. Brain Res. Brain Res. Rev. 24, 197–254 (1997).

    CAS  PubMed  Google Scholar 

  36. Franklin, K. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Academic, San Diego, 1997).

    Google Scholar 

  37. Datiche, F. & Cattarelli, M. Reciprocal and topographic connections between the piriform and prefrontal cortices in the rat: a tracing study using the B subunit of the cholera toxin. Brain Res. Bull. 41, 391–398 (1996).

    CAS  PubMed  Google Scholar 

  38. Price, J. L., Slotnick, B. M. & Revial, M. F. Olfactory projections to the hypothalamus. J. Comp. Neurol. 306, 447–461 (1991).

    CAS  PubMed  Google Scholar 

  39. McDonald, A. J. Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 55, 257–332 (1998).

    CAS  PubMed  Google Scholar 

  40. Simerly, R. in The Rat Nervous System (ed. Paxinos, G.) 353–376 (Academic, San Diego, 1995).

    Google Scholar 

  41. Amstrong, W. in The Rat Nervous System (ed. Paxinos, G.) 377–390 (Academic, San Diego, 1995).

    Google Scholar 

  42. Ausubel, F. et al. Current Protocols in Molecular Biology 15.1.1–15.8.7 (Wiley, New York, 2000).

    Google Scholar 

  43. Joyner, A. L. Gene Targeting—A Practical Approach 107–146 (IRL press, Oxford, 1993).

    Google Scholar 

  44. Cote, S., Ribeiro-Da-Silva, A. & Cuello, A. in Immunohistochemistry (ed. Cuello, A.) 147–168 (Wiley, Chichester, 1993).

    Google Scholar 

  45. Matsunami, H. & Buck, L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 (1997).

    CAS  PubMed  Google Scholar 

  46. Zhao, H. et al. Functional expression of a mammalian odorant receptor. Science 279, 237–242 (1998).

    ADS  CAS  PubMed  Google Scholar 

  47. Krautwurst, D., Yau, K. W. & Reed, R. R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95, 917–926 (1998).

    CAS  PubMed  Google Scholar 

  48. Araneda, R. C., Kini, A. D. & Firestein, S. The molecular receptive range of an odorant receptor. Nature Neurosci. 3, 1248–1255 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to F. Alt for providing training in his laboratory in embryonic stem cell techniques. We would like to thank P. Mombaerts for the pETLpA/LTNL plasmid; Q. Ma for helpful suggestions; and D. Hubel and R. Brent for critically reading the manuscript. We would also like to thank C. Gao for technical assistance, and members of the Buck laboratory for comments and discussions. This work was supported by the Howard Hughes Medical Institute, grants from the National Institutes of Health and the Department of Defense (L.B.B.), a Howard Hughes Predoctoral Fellowship (L.F.H.), the Fyssen Foundation (J.-P.M.) and the Alice and Joseph Brook Fund (J.-P.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda B. Buck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, Z., Horowitz, L., Montmayeur, JP. et al. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature 414, 173–179 (2001). https://doi.org/10.1038/35102506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35102506

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing