Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems

Abstract

Knowledge of carbon exchange between the atmosphere, land and the oceans is important, given that the terrestrial and marine environments are currently absorbing about half of the carbon dioxide that is emitted by fossil-fuel combustion. This carbon uptake is therefore limiting the extent of atmospheric and climatic change, but its long-term nature remains uncertain. Here we provide an overview of the current state of knowledge of global and regional patterns of carbon exchange by terrestrial ecosystems. Atmospheric carbon dioxide and oxygen data confirm that the terrestrial biosphere was largely neutral with respect to net carbon exchange during the 1980s, but became a net carbon sink in the 1990s. This recent sink can be largely attributed to northern extratropical areas, and is roughly split between North America and Eurasia. Tropical land areas, however, were approximately in balance with respect to carbon exchange, implying a carbon sink that offset emissions due to tropical deforestation. The evolution of the terrestrial carbon sink is largely the result of changes in land use over time, such as regrowth on abandoned agricultural land and fire prevention, in addition to responses to environmental changes, such as longer growing seasons, and fertilization by carbon dioxide and nitrogen. Nevertheless, there remain considerable uncertainties as to the magnitude of the sink in different regions and the contribution of different processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Zonal distribution of terrestrial and oceanic carbon fluxes.
Figure 2: An illustrative plot of the interannual variability of global terrestrial carbon exchange, as deduced using inverse modelling10.

References

  1. 1

    Bender, M., Ellis, T., Tans, P., Francey, R. & Lowe, D. Variability in the O2/N2 ratio of southern hemisphere air, 1991-1994: Implications for the carbon cycle. Glob. Biogeochem. Cycles 10, 9–21 (1996).

    ADS  CAS  Google Scholar 

  2. 2

    Keeling, R. F., Piper, S. C. & Heimann, M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381, 218–221 (1996).

    ADS  CAS  Google Scholar 

  3. 3

    Rayner, P. J., Enting, I. G., Francey, R. J. & Langenfelds, R. Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations. Tellus B 51, 213–232 (1999).

    ADS  Google Scholar 

  4. 4

    Prentice, I. C. et al. in Climate Change 2001: The Scientific Basis (eds Houghton, J. T. & Yihui, D.) Ch. 3, 183–237 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  5. 5

    Brown, S. in Climate Change 1995—Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses (eds Watson, R. T., Zinyowera, M. C., Moss, R. H. & Dokken, D. J.) 773–797 (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  6. 6

    Spiecker, H., Mielikäinen, K., Köhl, M. & Skovsgaard, J. P. Growth Trends in European Forests (Springer, Berlin, 1996).

    Google Scholar 

  7. 7

    Brown, S. L. & Schroeder, P. E. Spatial patterns of aboveground production and mortality of woody biomass for eastern US forests. Ecol. Appl. 9, 968–980 (1999).

    Google Scholar 

  8. 8

    Pacala, S. W. et al. Consistent land- and atmosphere-based US carbon sink estimates. Science 292, 2316–2320 (2001).

    ADS  CAS  Google Scholar 

  9. 9

    Tans, P. P., Fung, I. Y. & Takahashi, T. Observational constraints on the global atmospheric CO2 budget. Science 247, 1431–1438 (1990).

    ADS  CAS  PubMed  Google Scholar 

  10. 10

    Bousquet, P. et al. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290, 1342–1346 (2000).

    ADS  CAS  PubMed  Google Scholar 

  11. 11

    Baker, D. Sources and Sinks of Atmospheric CO2 Estimated from Batch Least-Squares Inversions of CO2 Concentration Measurements. Thesis, Princeton Univ. (2000).

    Google Scholar 

  12. 12

    Peylin, P., Baker, D., Sarmiento, J., Ciais, P. & Bousquet, P. Influence of transport uncertainty on annual mean versus seasonal inversion of atmospheric CO2 data. J. Geophys. Res. D (submitted).

  13. 13

    Heimann, M. Atmospheric Inversion Calculations Performed for IPCC Third Assessment Report Chapter 3 (The Carbon Cycle and Atmospheric CO2) (Max-Planck-Institute für Biogeochemie, Jena, 2001).

    Google Scholar 

  14. 14

    Ciais, P., Tans, P. P., Trolier, M., White, J. W. C. & Francey, R. J. A large northern-hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269, 1098–1102 (1995).

    ADS  CAS  PubMed  Google Scholar 

  15. 15

    Houghton, R. A., Hackler, J. L. & Lawrence, K. T. The US carbon budget: Contributions from land-use change. Science 285, 574–578 (1999).

    CAS  Google Scholar 

  16. 16

    Schimel, D. et al. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287, 2004–2006 (2000).

    ADS  CAS  PubMed  Google Scholar 

  17. 17

    McGuire, A. D. et al. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land-use effects with four process-based ecosystem models. Glob. Biogeochem. Cycles 15, 183–206 (2001).

    ADS  CAS  Google Scholar 

  18. 18

    Denning, A. S. et al. Three-dimensional transport and concentration of SF6—A model intercomparison study (TransCom 2). Tellus B 51, 266–297 (1999).

    ADS  Google Scholar 

  19. 19

    Bousquet, P., Ciais, P., Peylin, P., Ramonet, M. & Monfray, P. Inverse modeling of annual atmospheric CO2 sources and sinks 1. Method and control inversion. J. Geophys. Res. D 104, 26161–26178 (1999).

    ADS  CAS  Google Scholar 

  20. 20

    Kaminski, T., Heimann, M. & Giering, R. A coarse grid three-dimensional global inverse model of the atmospheric transport—1. Adjoint model and Jacobian matrix. J. Geophys. Res. D 104, 18535–18553 (1999).

    ADS  CAS  Google Scholar 

  21. 21

    Gurney, K. R., Rayner, P., Law, R. & Denning, S. Atmospheric carbon budget inversion intercomparison: preliminary results. Trans. Am. Geophys. Union 81, 276 (2000).

    Google Scholar 

  22. 22

    Fan, S. et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 442–446 (1998).

    ADS  CAS  Google Scholar 

  23. 23

    DeFries, R. S. et al. Mapping the land surface for global atmosphere-biosphere models: toward continuous distributions of vegetation's functional properties. J. Geophys. Res. D 100, 20867–20882 (1995).

    ADS  Google Scholar 

  24. 24

    Houghton, R. A. A new estimate of global sources and sinks of carbon from land-use change. Eos 81, S281 (2000).

    Google Scholar 

  25. 25

    Malhi,, Y. et al. Carbon dioxide transfer over a Central Amazonian rain forest. J. Geophys. Res. D 103, 31593–31612 (1998).

    ADS  CAS  Google Scholar 

  26. 26

    Phillips, O. L. et al. Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science 282, 439–442 (1998).

    ADS  CAS  PubMed  Google Scholar 

  27. 27

    Keeling, C. D. & Whorf, T. P. in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2001).

    Google Scholar 

  28. 28

    Conway, T. J., Tans, P. P., Waterman, L. S. & Thoning, K. W. Evidence for interannual variability of the carbon-cycle from the National Oceanic and Atmospheric Administration/ Climate Monitoring and Diagnostics Laboratory global air-sampling network. J. Geophys. Res. D 99, 22831–22855 (1994).

    ADS  Google Scholar 

  29. 29

    Rayner, P. J., Law, R. M. & Dargaville, R. The relationship between tropical CO2 fluxes and the El Niño-Southern Oscillation. Geophys. Res. Lett. 26, 493–496 (1999).

    ADS  CAS  Google Scholar 

  30. 30

    Vukicevic, T., Braswell, B. H. & Schimel, D. A diagnostic study of temperature controls on global terrestrial carbon exchange. Tellus B 53, 150–170 (2001).

    ADS  Google Scholar 

  31. 31

    Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C. & Wofsy, S. C. Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science 271, 1576–1578 (1996).

    ADS  CAS  Google Scholar 

  32. 32

    Kindermann, J., Würth, G., Kohlmaier, G. H. & Badeck, F. W. Interannual variation of carbon exchange fluxes in terrestrial ecosystems. Glob. Biogeochem. Cycles 10, 737–755 (1996).

    ADS  CAS  Google Scholar 

  33. 33

    Parton, W. J. et al. Observations and modeling of biomass and soil organic-matter dynamics for the grassland biome worldwide. Glob. Biogeochem. Cycles 7, 785–809 (1993).

    ADS  CAS  Google Scholar 

  34. 34

    Kelly, R. H. et al. Intra-annual and interannual variability of ecosystem processes in shortgrass steppe. J. Geophys. Res. D 105, 20093–20100 (2000).

    ADS  CAS  Google Scholar 

  35. 35

    Prentice, I. C., Heimann, M. & Sitch, S. The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations. Ecol. Appl. 10, 1553–1573 (2000).

    Google Scholar 

  36. 36

    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).

    ADS  CAS  PubMed  Google Scholar 

  37. 37

    Houghton, R. A. Interannual variability in the global carbon cycle. J. Geophys. Res. D 105, 20121–20130 (2000).

    ADS  CAS  Google Scholar 

  38. 38

    Braswell, B. H., Schimel, D. S., Linder, E. & Moore, B. The response of global terrestrial ecosystems to interannual temperature variability. Science 278, 870–872 (1997).

    ADS  CAS  Google Scholar 

  39. 39

    Yang, X. & Wang, M. X. Monsoon ecosystems control on atmospheric CO2 interannual variability: inferred from a significant positive correlation between year-to-year changes in land precipitation and atmospheric CO2 growth rate. Geophys. Res. Lett. 27, 1671–1674 (2000).

    ADS  CAS  Google Scholar 

  40. 40

    Holland, E. A., Dentener, F. J., Braswell, B. H. & Sulzman, J. M. Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46, 7–43 (1999).

    CAS  Google Scholar 

  41. 41

    Archer, S., Boutton, T. W. & Hibbard, K. A. in Global Biogeochemical Cycles and their Interrelationship with Climate (eds Schulze, E. D.) 115–137 (Academic, London, 2001).

    Google Scholar 

  42. 42

    Casperson, J. et al. Carbon accumulation in U.S. forests is caused overwhelmingly by changes in land use rather than CO2 or N fertilization or climate change. Science 290, 1148–1151 (2001).

    ADS  Google Scholar 

  43. 43

    Friedlingstein, P. et al. On the contribution of the biospheric CO2 fertilization to the missing sink. Glob. Biogeochem. Cycles 9, 541–556 (1995).

    ADS  CAS  Google Scholar 

  44. 44

    Kauppi, P. E., Mielikäinen, K. & Kuusela, K. Biomass and carbon budget of European forests, 1971 to 1990. Science 256, 70–74 (1992).

    ADS  CAS  PubMed  Google Scholar 

  45. 45

    Valentini, R. et al. Accounting for Carbon Sinks in the Biosphere, European Perspective (CARBOEUROPE European Office, Jena, 2000).

    Google Scholar 

  46. 46

    Fang, J. Y., Chen, A. P., Peng, C. H., Zhao, S. Q. & Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322 (2001).

    CAS  Google Scholar 

  47. 47

    Cramer, W. et al. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Change Biol. 5, 1–15 (1999).

    Google Scholar 

  48. 48

    Nilsson, S. et al. Full Carbon Account for Russia (International Institute for Applied Systems Analysis, Laxenburg, 2000).

    Google Scholar 

  49. 49

    Schulze, E. D. et al. in Carbon and Nitrogen Cycling in European Forest Ecosystems (ed. Schulze, E. D.) 468–491 (Springer, Berlin, 2000).

    Google Scholar 

  50. 50

    Harden, J. W., Sundquist, E. T., Stallard, R. F. & Mark, R. K. Dynamics of soil carbon during deglaciation of the Laurentide ice-sheet. Science 258, 1921–1924 (1992).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Keyser, A. R., Kimball, J. S., Nemani, R. R. & Running, S. W. Simulating the effects of climate change on the carbon balance of North American high-latitude forests. Glob. Change Biol. 6, 185–195 (2000).

    ADS  Google Scholar 

  52. 52

    Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).

    ADS  Google Scholar 

  53. 53

    Jones, P. D., New, M., Parker, D. E., Martin, S. & Rigor, I. G. Surface air temperature and its changes over the past 150 years. Rev. Geophys. 37, 173–199 (1999).

    ADS  Google Scholar 

  54. 54

    Barber, V. A., Juday, G. P. & Finney, B. P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405, 668–673 (2000).

    ADS  CAS  PubMed  Google Scholar 

  55. 55

    Kurz, W. A. & Apps, M. J. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol. Appl. 9, 526–547 (1999).

    Google Scholar 

  56. 56

    Field, C. B., Chapin, F. S., Matson, P. A. & Mooney, H. A. Responses of terrestrial ecosystems to the changing atmosphere—a resource-based approach. Annu. Rev. Ecol. Syst. 23, 201–235 (1992).

    Google Scholar 

Download references

Acknowledgements

This Progress Article arose from the International Workshop on Integrated Carbon Research and Observations, held on 16–20 October 2000. This workshop was organized under the auspices of the International Geosphere–Biosphere Programme (IGBP) and the Global Terrestrial Observing System (GTOS), and was co-funded by NOAA, the NSF, NASA, the US Department of Energy, the US Department of Interior/US Geological Survey, the US Department of Agriculture and the International Geosphere Biosphere Programme. D.S.S. was also supported by the European Commission, NASA, and the Bundesministerium für Bildung und Forschung.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. S. Schimel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schimel, D., House, J., Hibbard, K. et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169–172 (2001). https://doi.org/10.1038/35102500

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing