Energy spectra of quantum rings

Abstract

Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov–Bohm effect1, one of the best examples of quantum mechanical phase coherence2,3. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated4. The energy spectra of closed rings5 have only recently been studied by optical spectroscopy6,7. The prediction that they allow persistent current8 has been explored in various experiments9,10,11. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime12. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots13, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sample layout.
Figure 2: The addition spectrum.
Figure 3: Reconstruction of the energy spectrum.
Figure 4: Addition spectrum of a Sinai billiard.

References

  1. 1

    Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2

    Webb, R. A., Washburn, S., Umbach, C. P. & Laibowitz, R. B. Observation of h/e Aharonov-Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54, 2696–2699 (1985).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Timp, G. et al. Observation of the Aharonov-Bohm effect for ωcτ > 1. Phys. Rev. Lett. 58, 2814–2817 (1987).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Schuster, R. et al. Phase measurement in a quantum dot via a double-slit interference experiment. Nature 385, 417–420 (1997).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Byers, N. & Yang, C. N. Theoretical considerations concerning quantized magnetic flux in superconducting cylinders. Phys. Rev. Lett. 7, 46–49 (1961).

    ADS  Article  Google Scholar 

  6. 6

    Lorke, A. et al. Spectroscopy of nanoscopic semiconductor rings. Phys. Rev. Lett. 84, 2223–2226 (2000).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Büttiker, M., Imry, Y. & Landauer, R. Josephson behavior in small normal one-dimensional rings. Phys. Lett. A 96, 365–367 (1983).

    ADS  Article  Google Scholar 

  9. 9

    Lévy, L. P., Dolan, G., Dunsmuir, J. & Bouchiat, H. Magnetization of mesoscopic copper rings: Evidence for persistent currents. Phys. Rev. Lett. 64, 2074–2077 (1990).

    ADS  Article  Google Scholar 

  10. 10

    Chandrasekhar, V. et al. Magnetic response of a single, isolated gold loop. Phys. Rev. Lett. 67, 3578–3581 (1991).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Mailly, D., Chapelier, C. & Benoit, A. Experimental observation of persistent currents in GaAs-AlGaAs single loop. Phys. Rev. Lett. 70, 2020–2023 (1993).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Kouwenhoven, L. P. et al. in Nato ASI Conf. Proc. (eds Kouwenhoven, L. P., Schön, G. & Sohn, L. L.) 105–214 (Kluwer, Dordrecht, 1997).

    Google Scholar 

  13. 13

    Tarucha, S., Austing, D. G., Honda, T., van der Haage, R. J. & Kouwenhoven, L. P. Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77, 3613–3616 (1996).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Held, R. et al. In-plane gates and nanostructures fabricated by direct oxidation of semiconductor heterostructures with an atomic force microscope. Appl. Phys. Lett. 73, 262–264 (1998).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Lüscher, S., Heinzel, T., Ensslin, K., Wegscheider, W. & Bichler, M. Signatures of spin pairing in a quantum dot in the Coulomb blockade regime. Phys. Rev. Lett. 86, 2118–2121 (2001).

    ADS  Article  Google Scholar 

  16. 16

    Heinzel, T. et al. Electronic properties of semiconductor nanostructures patterned by AFM lithography. Physica E 9, 84–93 (2001).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Pedersen, S., Hansen, A. E., Kristensen, A., Sorensen, S. B. & Lindelof, P:. E. Observation of quantum asymmetry in an Aharonov-Bohm ring. Phys. Rev. B 61, 5457–5460 (2000).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Cassé, M. et al. Temperature dependence of the Aharonov-Bohm oscillations and the energy spectrum in a single-mode ballistic ring. Phys. Rev. B 62, 2624–2629 (2000).

    ADS  Article  Google Scholar 

  19. 19

    Tan, W.-C. & Inkson, J. C. Electron states in a two-dimensional ring—an exactly soluble model. Semicond. Sci. Technol. 11, 1635–1641 (1996).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Chakraborty, T. & Pietiläinen, P. Persistent currents in a quantum ring: Effects of impurities and interactions. Phys. Rev. B 52, 1932–1935 (1995).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Kastner, M. A. The single-electron transistor. Rev. Mod. Phys. 64, 849–858 (1992).

    ADS  Article  Google Scholar 

  22. 22

    Berman, D., Entin-Wohlman, O. & Azbel, M. Y. Diamagnetic spectrum and oscillations in an elliptic shell. Phys. Rev. B 42, 9299–9306 (1990).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Schuster, R. & Ensslin, K. Antidot superlattices: classical chaos and quantum transport. Adv. Solid State Phys. 34, 195–218 (1994).

    Article  Google Scholar 

  25. 25

    Loss, D. & Goldbart, P. Period and amplitude halving in mesoscopic rings with spin. Phys. Rev. B 43, 13762–13765 (1991).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Büttiker and D. Loss for valuable discussions. Financial support from the Swiss Science Foundation (Schweizerischer Nationalfonds) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Ensslin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuhrer, A., Lüscher, S., Ihn, T. et al. Energy spectra of quantum rings. Nature 413, 822–825 (2001). https://doi.org/10.1038/35101552

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.