Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Uracil-DNA glycosylase acts by substrate autocatalysis

Abstract

In humans, uracil appears in DNA at the rate of several hundred bases per cell each day as a result of misincorporation of deoxyuridine (dU) or deamination of cytosine. Four enzymes that catalyse the hydrolysis of the glycosylic bond of dU in DNA to yield an apyridiminic site as the first step in base excision repair have been identified in the human genome1. The most efficient and well characterized of these uracil-DNA glycosylases is UDG (also known as UNG and present in almost all known organisms)2, which excises U from single- or double-stranded DNA and is associated with DNA replication forks3. We used a hybrid quantum-mechanical/molecular-mechanical (QM/MM) approach4 to determine the mechanism of catalysis by UDG. In contrast to the concerted associative mechanism proposed initially5,6,7,8,9,10, we show here that the reaction proceeds in a stepwise dissociative manner11,12. Cleavage of the glycosylic bond yields an intermediate comprising an oxocarbenium cation and a uracilate anion. Subsequent attack by a water molecule and transfer of a proton to D145 result in the products. Surprisingly, the primary contribution to lowering the activation energy comes from the substrate, rather than from the enzyme. This ‘autocatalysis’ derives from the burial and positioning of four phosphate groups that stabilize the rate-determining transition state. The importance of these phosphates explains the residual activity observed for mutants that lack key residues6,7,8,9. A corresponding catalytic mechanism could apply to the DNA glycosylases TDG and SMUG1, which belong to the same structural superfamily as UDG13,14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction mechanism.
Figure 2: Wall-eyed stereodiagram of TS1.
Figure 3: Variation of the TS1 barrier height relative to reactants as MM charges are set to zero cumulatively in order of decreasing distance from C1′ of dU in TS1.

Similar content being viewed by others

References

  1. Wood, R. D., Mitchell, M., Sgouros, J. & Lindahl, T. Human DNA repair genes. Science 291, 1284–1289 (2001).

    Article  ADS  CAS  Google Scholar 

  2. Mol, C. D., Parikh, S. S., Putnam, C. D., Lo, T. P. & Tainer, J. A. DNA repair mechanisms for the recognition and removal of damaged DNA bases. Annu. Rev. Biophys. Biomol. Struct. 28, 101–128 (1999).

    Article  CAS  Google Scholar 

  3. Nilsen, H. et al. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol. Cell 5, 1059–1065 (2000).

    Article  CAS  Google Scholar 

  4. Field, M. J., Bash, P. A. & Karplus, M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comp. Chem. 11, 700–733 (1990).

    Article  CAS  Google Scholar 

  5. Savva, R., McAuley-Hecht, K., Brown, T. & Pearl, L. The structural basis of specific base excision repair by uracil-DNA glycosylase. Nature 373, 487–493 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Slupphaug, G. et al. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384, 87–92 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Shroyer, M. J. N., Bennett, S. E., Putnam, C. D., Tainer, J. A. & Mosbaugh, D. W. Mutation of an active site residue in Escherichia coli uracil DNA glycosylase: effect on DNA binding, uracil inhibition and catalysis. Biochemistry 38, 4834–4845 (1999).

    Article  CAS  Google Scholar 

  8. Drohat, A. C. et al. Heteronuclear NMR and crystallographic studies of wild-type and H187Q Escherichia coli uracil DNA glycosylase: electrophilic catalysis of uracil expulsion by a neutral histidine 187. Biochemistry 38, 11876–11886 (1999).

    Article  CAS  Google Scholar 

  9. Drohat, A. C., Jagadeesh, J., Ferguson, E. & Stivers, J. T. Role of electrophilic and general base catalysis in the mechanism of Escherichia coli uracil DNA glycosylase. Biochemistry 38, 11866–11875 (1999).

    Article  CAS  Google Scholar 

  10. Drohat, A. C. & Stivers, J. T. NMR evidence for an unusually low N1 pKa for uracil bound to uracil DNA glycosylase: implications for catalysis. J. Am. Chem. Soc. 122, 1840–1841 (2000).

    Article  CAS  Google Scholar 

  11. Parikh, S. S. et al. Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proc. Natl Acad. Sci. USA 97, 5083–5088 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Werner, R. M. & Stivers, J. T. Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium-ion anion intermediate. Biochemistry 39, 14054–14064 (2000).

    Article  CAS  Google Scholar 

  13. Haushalter, K. A., Stukenberg, P. T., Kirschner, M. W. & Verdine, G. L. Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. Curr. Biol. 9, 174–185 (1999).

    Article  CAS  Google Scholar 

  14. Pearl, L. H. Structure and function in the uracil-DNA glycosylase superfamily. Mutat. Res. 460, 165–181 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985).

    Article  CAS  Google Scholar 

  16. Brooks, B. R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  17. Simonson, T., Archontis, G. & Karplus, M. Continuum treatment of long-range interactions in free energy calculations. Application to protein-ligand binding. J. Phys. Chem. B 101, 8349–8362 (1997).

    Article  Google Scholar 

  18. Slupphaug, G. et al. Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry 34, 128–138 (1995).

    Article  CAS  Google Scholar 

  19. Weinhold, F. in Encyclopedia of Computational Chemistry (ed. Schleyer, P. R.) 1792–1811 (Wiley, New York, 1998).

    Google Scholar 

  20. Chen, X.-Y., Berti, P. J. & Schramm, V. L. Transition-state analysis for depurination of DNA by ricin A-chain. J. Am. Chem. Soc. 122, 6527–6534 (2000).

    Article  CAS  Google Scholar 

  21. Bash, P. A. et al. Computer simulation and analysis of the reaction pathway of triosephosphate isomerase. Biochemistry 30, 5826–5832 (1991).

    Article  CAS  Google Scholar 

  22. Drohat, A. C. & Stivers, J. T. Escherichia coli uracil DNA glycosylase: NMR characterization of the short hydrogen bond from His187 to uracil O2. Biochemistry 39, 11865–11875 (2000).

    Article  CAS  Google Scholar 

  23. Wu, N., Mo, Y., Gao, J. & Pai, E. F. Electrostatic stress in catalysis: structure and mechanism of the enzyme orotodine monophosphate decarboxylase. Proc. Natl Acad. Sci. USA 97, 2017–2022 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Shapiro, R. & Kang, S. Uncatalyzed hydrolysis of deoxyuridine, thymidine, and 5-bromodeoxyuridine. Biochemistry 8, 1806–1810 (1969).

    Article  CAS  Google Scholar 

  25. Schaefer, M., Sommer, M. & Karplus, M. pH-dependence of protein stability: absolute electrostatic free energy differences between conformations. J. Phys. Chem. B 101, 1663–1683 (1997).

    Article  CAS  Google Scholar 

  26. MacKerell, A. D. Jr, Wiórkiewicz-Kuczera, J. & Karplus, M. An all-atom empirical energy function for the simulation of nucleic acids. J. Am. Chem. Soc. 117, 11946–11975 (1995).

    Article  CAS  Google Scholar 

  27. MacKerell, A. D. Jr et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  Google Scholar 

  28. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  ADS  CAS  Google Scholar 

  29. Reuter, N., Dejaegere, A., Maigret, B. & Karplus, M. Frontier bonds in QM/MM methods: a comparison of different approaches. J. Phys. Chem. A 104, 1720–1735 (2000).

    Article  CAS  Google Scholar 

  30. Desiraju, G. R. The C-H···O hydrogen bond: structural implications and supramolecular design. Acc. Chem. Res. 29, 441–449 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. H. Williams for a critical reading of the manuscript; X. Lopez, Q. Cui and R. Petrella for helpful discussions; B. Webb for technical assistance; and W. G. Richards for his hospitality in Oxford, where most of the work was carried out. A.R.D. is a Burroughs Wellcome Fund Hitchings-Elion Postdoctoral Fellow, and, when the research was initiated, M.K. was the Eastman Visiting Professor in Oxford. The work at Sheffield is supported by a grant from the Biotechnology and Biological Science Research Council; the work at Harvard is supported in part by a grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Karplus.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinner, A., Blackburn, G. & Karplus, M. Uracil-DNA glycosylase acts by substrate autocatalysis. Nature 413, 752–755 (2001). https://doi.org/10.1038/35099587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35099587

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing