Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The many roles of an RNA editor

Key Points

  • RNA editing describes the changes that take place in the RNA sequence after transcription is completed. Examples include modification of cytosine to uracil or of adenine to isoleucine by deamination, or insertion and/or deletion of particular bases.

  • In the apolipoproteinB (APOB) mRNA, the deamination of a cytosine to a uracil generates a stop codon, so leading to the synthesis of a shorter protein isoform. The minimum protein requirements for editing APOB mRNA are the deaminase enzyme APOBEC1 and the auxiliary factor ACF.

  • Sequence motifs in APOBEC1 and ACF are reminiscent of the domains that are present in the ADAR (adenosine deaminases that act on RNA) family of enzymes, which have a catalytic deaminase domain and an arginine/glycine-enriched domain. In addition, ACF has a putative double-stranded RNA-binding domain that is present in ADAR proteins.

  • Three proteins that are homologous to APOBEC1 (AID, APOBEC2 and phorbolin1) have been isolated; however, these are unable to edit APOB mRNA and it is uncertain whether they are RNA-editing enzymes.

  • There are three, highly homologous, mammalian ADAR enzymes. ADAR1 and ADAR2 can convert specific adenosines to inosines in pre-mRNA. Most transcripts that are edited are specific to the central nervous system.

  • Even though ADAR1 and ADAR2 have overlapping specificities in vitro, transgenic experiments in mice have shown that the enzymes cannot compensate for one another and that each is required to edit specific transcripts.

    In some instances, there seems to be a link between RNA editing and splicing, whereby editing is required for efficient splicing.

  • ADARs edit transcripts in the 5′ and 3′ untranslated regions, as well as in exonic and intronic regions. This raises the possibility that RNA editing has other roles in the cell besides generating codon diversity. For example, it might also function in RNA transport or stability.

  • There is a link in mice between the inability to edit the glutamine/arginine site in the glutamate-gated ion channel receptor B transcript and epilepsy. Also hyper-editing of viral transcripts has been associated with certain fatal diseases.

Abstract

The availability of complete genome sequences has made it clear that gene number is not the sole determinant of the complexity of the proteome. Additional complexity that is not readily detected by genome analysis is present in the number and types of RNA transcript that can be derived from each locus. Although alternative splicing is a well-recognized method of generating diversity, the more subtle mechanism of RNA editing is less familiar.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The processing of RNA in a cell.
Figure 2: Recognition of the edited nucleotide by the editing enzymes.
Figure 3: Schematic diagram of human ADAR, APOBEC1 and ACF.
Figure 4: Editing of adenosine bases.

Similar content being viewed by others

References

  1. Benne, R. et al. Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46, 819–826 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Powell, L. M. et al. A novel form of tissue-specific RNA processing produces apolipoprotein-48 in intestine. Cell 50, 831–840 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, S. H. et al. Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in frame stop codon. Science 238, 363–366 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Chan, L. Apolipoprotein B, the major protein component of triglyceride-rich and low density lipoproteins. J. Biol. Chem. 267, 25621–25624 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Chester, A., Scott, J., Anant, S. & Navaratnam, N. RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. Biochim. Biophys. Acta 1494, 1–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Greeve, J., Altkemper, I., Dieterich, J. H., Greten, H. & Windler, E. Apolipoprotein B mRNA editing in 12 different mammalian species: hepatic expression is reflected in low concentrations of apoB-containing plasma lipoproteins. J. Lipid Res. 34, 1367–1383 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Chang, B. H.-J., Lau, P. P. & Chan, L. in Modification and Editing of RNA (eds Grosjean, H. & Benne, R.) 325–342 (ASM, Washington, DC, 1998).

    Google Scholar 

  8. Backus, J. W. & Smith, H. C. Specific 3′ sequences flanking a minimal apolipoprotein B (apoB) mRNA editing 'cassette' are critical for efficient editing in vitro. Biochim. Biophys. Acta 1217, 65–73 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Shah, R. R. et al. Sequence requirements for the editing of apolipoprotein B mRNA. J. Biol. Chem. 266, 16301–16304 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Driscoll, D. M., Lakhe-Reddy, S., Oleksa, L. M. & Martinez, D. Induction of RNA editing at heterologous sites by sequences in apolipoprotein B mRNA. Mol. Cell. Biol. 13, 7288–7294 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hersberger, M. & Innerarity, T. L. Two efficiency elements flanking the editing site of cytidine 6666 in the apolipoprotein B mRNA support mooring-dependent editing. J. Biol. Chem. 273, 9435–9442 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Nakamuta, M., Tsai, A., Chan, L., Davidson, N. O. & Teng, B. B. Sequence elements required for apolipoprotein B mRNA editing enhancement activity from chicken enterocytes. Biochem. Biophys. Res. Commun. 254, 744–750 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Hersberger, M., Patarroyo-White, S., Arnold, K. S. & Innerarity, T. L. Phylogenetic analysis of the apolipoprotein B mRNA-editing region. Evidence for a secondary structure between the mooring sequence and the 3′ efficiency element. J. Biol. Chem. 274, 34590–34597 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Teng, B., Burant, C. F. & Davidson, N. O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260, 1816–1819 (1993).This study describes the cloning of APOBEC1 , the first editing enzyme to be cloned.

    Article  CAS  PubMed  Google Scholar 

  15. Mehta, A., Kinter, M. T., Sherman, N. E. & Driscoll, D. M. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol. Cell. Biol. 20, 1846–1854 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lellek, H. et al. Purification and molecular cloning of a novel essential component of the apolipoprotein B mRNA editing enzyme-complex. J. Biol. Chem. 275, 19848–19856 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Navaratnam, N. et al. The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J. Biol. Chem. 268, 20709–20712 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Anant, S., MacGinnitie, A. J. & Davidson, N. O. apobec-1, the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme, is a novel RNA-binding protein. J. Biol. Chem. 270, 14762–14767 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Navaratnam, N. et al. Evolutionary origins of apoB mRNA editing: catalysis by a cytidine deaminase that has acquired a novel RNA-binding motif at its active site. Cell 81, 187–195 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Lau, P. P., Zhu, H. J., Baldini, A., Charnsangavej, C. & Chan, L. Dimeric structure of a human apolipoprotein B mRNA editing protein and cloning and chromosomal localization of its gene. Proc. Natl Acad. Sci. USA 91, 8522–8526 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hadjiagapiou, C., Giannoni, F., Funahashi, T., Skarosi, S. F. & Davidson, N. O. Molecular cloning of a human small intestinal apolipoprotein B mRNA editing protein. Nucleic Acids Res. 22, 1874–1879 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhattacharya, S., Navaratnam, N., Morrison, J. R., Scott, J. & Taylor, W. R. Cytosine nucleoside/nucleotide deaminases and apolipoprotein B mRNA editing. Trends Biochem. Sci. 19, 105–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Carter, C. W. in Modification and Editing of RNA (eds Grosjean, H. & Benne, R.) 363–375 (ASM, Washington, DC, 1998).

    Google Scholar 

  24. Nakamuta, M. et al. Alternative mRNA splicing and differential promoter utilization determine tissue-specific expression of the apolipoprotein B mRNA-editing protein (Apobec1) gene in mice. Structure and evolution of Apobec1 and related nucleoside/nucleotide deaminases. J. Biol. Chem. 270, 13042–13056 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Greeve, J., Axelos, D., Welker, S., Schipper, M. & Greten, H. Distinct promoters induce APOBEC–1 expression in rat liver and intestine. Arterioscler. Thromb. Vasc. Biol. 18, 1079–1092 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Blanc, V. et al. Identification of GRY-RBP as an apolipoprotein B RNA-binding protein that interacts with both apobec-1 and apobec-1 complementation factor to modulate C to U editing. J. Biol. Chem. 276, 10272–10283 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Hirano, K. et al. Targeted disruption of the mouse apobec-1 gene abolishes apolipoprotein B mRNA editing and eliminates apolipoprotein B48. J. Biol. Chem. 271, 9887–9890 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Morrison, J. R. et al. Apolipoprotein B RNA editing enzyme-deficient mice are viable despite alterations in lipoprotein metabolism. Proc. Natl Acad. Sci. USA 93, 7154–7159 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakamuta, M. et al. Complete phenotypic characterization of apobec-1 knockout mice with a wild-type genetic background and a human apolipoprotein B transgenic background, and restoration of apolipoprotein B mRNA editing by somatic gene transfer of Apobec-1. J. Biol. Chem. 271, 25981–25988 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Yamanaka, S. et al. Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc. Natl Acad. Sci. USA 92, 8483–8487 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamanaka, S., Poksay, K. S., Arnold, K. S. & Innerarity, T. L. A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. Genes Dev. 11, 321–333 (1997).This study identifies NAT1 , the mRNA of which is extensively edited when APOBEC1 is overexpressed in mice and rabbits.

    Article  CAS  PubMed  Google Scholar 

  32. Skuse, G. R., Cappione, A. J., Sowden, M., Metheny, L. J. & Smith, H. C. The neurofibromatosis type 1 messenger RNA undergoes base-modification RNA editing. Nucleic Acids Res. 24, 478–486 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao, W. et al. APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family. Biochem. Biophys. Res. Commun. 260, 398–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Madsen, P. et al. Psoriasis upregulated phorbolin-1 shares structural but not functional similarity to the mRNA-editing protein apobec-1. J. Invest. Dermatol. 113, 162–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).Shows the similarity between the editing enzymes APOBEC1 and AID.

    Article  CAS  PubMed  Google Scholar 

  36. Muto, T., Muramatsu, M., Taniwaki, M., Kinoshita, K. & Honjo, T. Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics 68, 85–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Kinoshita, K. & Honjo, T. Linking class-switch recombination with somatic hypermutation. Nature Rev. Mol. Cell Biol. 2, 493–503 (2001).

    Article  CAS  Google Scholar 

  40. Jacobs, H. & Bross, L. Towards an understanding of somatic hypermutation. Curr. Opin. Immunol. 13, 208–218 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Basilio, C., Wahba, A. J., Lengyel, P., Speyer, J. F. & Ochoa, S. Synthetic polynucleotides and the amino acid code. Proc. Natl Acad. Sci. USA 48, 613–616 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bass, B. L. & Weintraub, H. A developmental regulated activity that unwinds RNA duplexes. Cell 48, 607–613 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Rebagliati, M. R. & Melton, D. A. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 48, 599–605 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Bass, B. L. et al. A standardized nomenclature for adenosine deaminases that act on RNA. RNA 3, 947–949 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hough, R. F. & Bass, B. L. in RNA Editing (ed. Bass, B. L.) 77–108 (Oxford Univ. Press, 2000).

    Google Scholar 

  47. Wagner, R. W. et al. Double-stranded RNA unwinding and modifying activity is detected ubiquitously in primary tissues and cell lines. Mol. Cell. Biol. 10, 5586–5590 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, Y., George, C. X., Patterson, J. B. & Samuel, C. Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J. Biol. Chem. 272, 4419–4428 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Gerber, A., O'Connell, M. A. & Keller, W. Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette. RNA 3, 453–463 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lai, F., Chen, C.-X., Carter, K. C. & Nishikura, K. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol. Cell. Biol. 17, 2413–2424 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Melcher, T. et al. RED2, a brain specific member of the RNA-specific adenosine deaminase family. J. Biol. Chem. 271, 31795–31798 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, C. X. et al. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6, 755–767 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Polson, A. G., Crain, P. F., Pomerantz, S. C., McCloskey, J. A. & Bass, B. L. The mechanism of adenosine to inosine conversion by the double-stranded RNA unwinding/modifying activity: a high-performance liquid chromatography–mass spectrometry analysis. Biochemistry 30, 11507–11514 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Gerber, A., Grosjean, H., Melcher, T. & Keller, W. Tad1p, a yeast tRNA-specific adenosine deaminase, is related to the mammalian pre-mRNA editing enzymes ADAR1 and ADAR2. EMBO J. 17, 4780–4789 (1998).This important study shows the similarity between the enzymes involved in RNA editing and tRNA modification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gerber, A. P. & Keller, W. An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science 286, 1146–1149 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Gerber, A. P. & Keller, W. RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem. Sci. 26, 376–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. St Johnston, D., Brown, N. H., Gall, J. G. & Jantsch, M. A conserved double-stranded RNA-binding domain. Proc. Natl Acad. Sci. USA 89, 10979–10983 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, U., Wang, Y., Sanford, T., Zeng, Y. & Nishikura, K. Molecular cloning of cDNAs for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc. Natl Acad. Sci. USA 91, 11457–11461 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. O'Connell, M. A. et al. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol. Cell. Biol. 15, 1389–1397 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lai, F., Drakas, R. & Nishikura, K. Mutagenic analysis of double-stranded RNA adenosine deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts. J. Biol. Chem. 270, 17098–17105 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Reinisch, K. M., Chen, L., Verdine, G. L. & Lipscomb, W. N. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell 82, 143–153 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Hough, R. F. & Bass, B. L. Analysis of Xenopus dsRNA adenosine deaminase cDNAs reveals similarities to DNA methyltransferases. RNA 3, 356–370 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Stephens, O. M., Yi-Brunozzi, H. Y. & Beal, P. A. Analysis of the RNA-editing reaction of ADAR2 with structural and fluorescent analogues of the GluR-B R/G editing site. Biochemistry 39, 12243–12251 (2000).This important study provides insight into the mechanism of ADAR2 catalysis.

    Article  CAS  PubMed  Google Scholar 

  64. Higuchi, M. et al. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron–exon structure determines position and efficiency. Cell 75, 1361–1370 (1993).Shows that editing of pre-mRNA by the ADAR family of enzymes requires a duplex structure and does not depend on a consensus sequence surrounding the edited position.

    Article  CAS  PubMed  Google Scholar 

  65. Ryter, J. M. & Schultz, S. C. Molecular basis of double-stranded RNA–protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J. 17, 7505–7513 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ramos, A. et al. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J. 19, 997–1009 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yi-Brunozzi, H. Y., Stephens, O. M. & Beal, P. A. Conformational changes that occur during an RNA editing adenosine deamination reaction. J. Biol. Chem. 276, 37827–37833 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Wong, S. K., Sato, S. & Lazinski, D. W. Substrate recognition by ADAR1 and ADAR2. RNA 7, 846–858 (2001).Identifies the deaminase domain in the ADAR enzymes as being the main determinant of substrate specificity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Patterson, J. B. & Samuel, C. E. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol. Cell. Biol. 15, 5376–5388 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. George, C. X. & Samuel, C. E. Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc. Natl Acad. Sci. USA 96, 4621–4626 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. George, C. X. & Samuel, C. E. Characterization of the 5′-flanking region of the human RNA-specific adenosine deaminase ADAR1 gene and identification of an interferon-inducible ADAR1 promoter. Gene 229, 203–213 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Eckmann, C. R., Neunteufl, A., Pfaffstetter, L. & Jantsch, M. F. The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol. Biol. Cell 12, 1911–1924 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Herbert, A., Lowenhaupt, K., Spitzner, J. & Rich, A. Chicken double-stranded RNA adenosine deaminase has apparent specificity for Z-DNA. Proc. Natl Acad. Sci. USA 92, 7550–7554 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Herbert, A. RNA editing, introns and evolution. Trends Genet. 12, 6–9 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Herbert, A. et al. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc. Natl Acad. Sci. USA 94, 8421–8426 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schwartz, T., Rould, M. A., Lowenhaupt, K., Herbert, A. & Rich, A. Crystal structure of the Zα domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284, 1841–1845 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Emeson, R. B. & Singh, M. in RNA Editing (ed. Bass, B. L.) 109–138 (Oxford Univ. Press, 2000).

    Google Scholar 

  78. Palladino, M. J., Keegan, L. P., O'Connell, M. A. & Reenan, R. A. dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA 6, 1004–1018 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Patton, D. E., Silva, T. & Bezanilla, F. RNA editing generates a diverse array of transcripts encoding squid Kv2 K+ channels with altered functional properties. Neuron 19, 711–722 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Seeburg, P. H. The role of RNA editing in controlling glutamate receptor channel properties. J. Neurochem. 66, 1–5 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Burns, C. M. et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Peixoto, A. A., Smith, L. A. & Hall, J. C. Genomic organization and evolution of alternative exons in a Drosophila calcium channel gene. Genetics 145, 1003–1013 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Smith, L. A. et al. A Drosophila calcium channel α1 subunit gene maps to a genetic locus associated with behavioural and visual defects. J. Neurosci. 16, 7868–7879 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hanrahan, C. J., Palladino, M. J., Ganetzky, B. & Reenan, R. A. RNA editing of the Drosophila para Na(+) channel transcript. Evolutionary conservation and developmental regulation. Genetics 155, 1149–1160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Semenov, E. P. & Pak, W. L. Diversification of Drosophila chloride channel gene by multiple posttranscriptional mRNA modifications. J. Neurochem. 72, 66–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Rueter, S. M., Dawson, T. R. & Emeson, R. B. Regulation of alternative splicing by RNA editing. Nature 399, 75–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  88. Sommer, B., Köhler, M., Sprengel, R. & Seeburg, P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Brusa, R. et al. Early-onset epilepsy and postnatal lethality associated with editing-deficient GluR-B allele in mice. Science 270, 1677–1680 (1995).Shows the absolute requirement for editing the GluR-B transcript.

    Article  CAS  PubMed  Google Scholar 

  90. Lomeli, H. et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709–1713 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Melcher, T. et al. A mammalian RNA editing enzyme. Nature 379, 460–464 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. O'Connell, M. A., Gerber, A. & Keller, W. Purification of human double-stranded RNA-specific editase1 (hRed1), involved in editing of brain glutamate receptor B pre-mRNA. J. Biol. Chem. 272, 473–478 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).This elegant study shows that GluR-B is the crucial transcript that is edited by ADAR2.

    Article  CAS  PubMed  Google Scholar 

  94. Palladino, M. J., Keegan, L. P., O'Connell, M. A. & Reenan, R. A. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102, 437–449 (2000).This describes the consequences on CNS function of having no Adar activity in Drosophila.

    Article  CAS  PubMed  Google Scholar 

  95. Wang, Q., Khillan, J., Gadue, P. & Nishikura, K. Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290, 1765–1768 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Beghini, A. et al. RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum. Mol. Genet. 9, 2297–2304 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Paul, M. & Bass, B. L. Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. EMBO J. 17, 1120–1127 (1998).Reports the abundance of inosine in mRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Morse, D. P. & Bass, B. L. Detection of inosine in messenger RNA by inosine-specific cleavage. Biochemistry 36, 8429–8434 (1997). Describes the only screen that is available at present to find inosine-containing mRNA.

    Article  CAS  PubMed  Google Scholar 

  99. Morse, D. P. & Bass, B. L. Long RNA hairpins that contain inosine are present in Caenorhabditis elegans poly(A)+ RNA. Proc. Natl Acad. Sci. USA 96, 6048–6053 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Motorin, Y. & Grosjean, H. in Modification and Editing of RNA (ed. Grosjean, H. & Benne, R.) 543–549 (ASM, Washington, DC, 1998).

    Google Scholar 

  101. Yu, Y. T., Shu, M. D. & Steitz, J. A. Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J. 17, 5783–5795 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ganot, P., Jady, B. E., Bortolin, M. L., Darzacq, X. & Kiss, T. Nucleolar factors direct the 2′-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Mol. Cell. Biol. 19, 6906–6917 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kiss, T. New EMBO member's review: small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 20, 3617–3622 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cavaille, J. et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc. Natl Acad. Sci. USA 97, 14311–14316 (2000). Indicates a possible link between snoRNP-mediated modification of mRNA and ADAR activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Filipowicz, W. Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proc. Natl Acad. Sci. USA 97, 14035–14037 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yi-Brunozzi, H. Y., Easterwood, L. M., Kamilar, G. M. & Beal, P. A. Synthetic substrate analogs for the RNA-editing adenosine deaminase ADAR-2. Nucleic Acids Res. 27, 2912–2917 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sodhi, M. S., Burnet, P. W., Makoff, A. J., Kerwin, R. W. & Harrison, P. J. RNA editing of the 5-HT(2C) receptor is reduced in schizophrenia. Mol. Psychiat. 6, 373–379 (2001).

    Article  CAS  Google Scholar 

  108. Niswender, C. M. et al. RNA editing of the human serotonin 5-HT2C receptor. Alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacology 24, 478–491 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Akbarian, S., Smith, M. A. & Jones, E. G. Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer's disease, Huntington's disease and schizophrenia. Brain Res. 699, 297–304 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Rizzetto, M. The delta agent. Hepatology 3, 729–737 (1983).

    Article  CAS  PubMed  Google Scholar 

  111. Polson, A. G., Bass, B. L. & Casey, J. L. RNA editing of hepatitis δ antigenome by dsRNA-adenosine deaminase. Nature 380, 454–456 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Casey, J. L. & Gerin, J. L. Hepatitis D virus RNA editing: specific modification of adenosine in the antigenomic RNA. J. Virol. 69, 7593–7600 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cattaneo, R. et al. Biased hypermuation and other genetic changes in defective measles viruses in human brain infections. Cell 55, 255–265 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cattaneo, R., Kaelin, K., Baczko, K. & Billeter, M. A. Measles virus editing provides an additional cysteine-rich protein. Cell 56, 759–764 (1989).

    Article  CAS  PubMed  Google Scholar 

  115. Bass, B. L., Weintraub, H., Cattaneo, R. & Billeter, M. A. Biased hypermutation of viral RNA genomes could be due to unwinding/modification of double-stranded RNA. Cell 56, 331 (1989).

    Article  CAS  PubMed  Google Scholar 

  116. Bourara, K., Litvak, S. & Araya, A. Generation of G-to-A and C-to-U changes in HIV-1 transcripts by RNA editing. Science 289, 1564–1566 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Berkhout, B., Das, A. T. & Beerens, N. HIV-1 RNA editing, hypermutation, and error-prone reverse transcription. Science 292, 7 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Kumar, M. & Carmichael, G. C. Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc. Natl Acad. Sci. USA 94, 3542–3547 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, Z. & Carmichael, G. G. The fate of dsRNA in the nucleus. A p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106, 465–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Maquat, L. E. & Carmichael, G. G. Quality control of mRNA function. Cell 104, 173–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Scadden, A. D. & Smith, C. W. Specific cleavage of hyper-edited dsRNAs. EMBO J. 20, 4243–4252 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Gray and D. Scadden for their helpful comments and to S. Bruce for drawing the original figures. In addition, we are grateful to B. Bass, D. Morse and P. Seeburg for sharing unpublished work, and to W. Keller and R. Reenan for their many discussions. We apologize to colleagues whose work could not be cited due to space constraints. Work in the authors' laboratory is supported by the MRC and a grant from the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary A. O'Connell.

Related links

Related links

DATABASE LINKS

Locuslink 

ACF

ADAR1

ADAR2

ADAR3

AID

APOB

APOBEC1

APOBEC2

GRY-RBP

NF1

PTPN6 

OMIM 

acute myeloid leukaemia

Alzheimer disease

Huntingdon disease

hyper-immunoglobulin M

measles inclusion body encephalitis

schizophrenia

subacute sclerosing panencephalitis

SWISS-PROT

5-HT2C

dsRBD

eIF4G

KSRP

Glossary

CAPPING

The process by which eukaryotic mRNA is modified by the addition of an m7G(5′)ppp(5′)N structure at the 5′ terminus. Capping is essential for several important steps of gene expression: for example, mRNA stabilization, splicing, mRNA export from the nucleus and initiation of translation.

KINETOPLAST

An intracellular DNA-containing structure that is a modified mitochondrion with an associated centriole-like organelle (kinetosome), which is characteristic of the class that includes trypanosomes.

PLASMA

A blood component that is composed of 90% water and transports blood cells, nutrients, waste products, salts, antibodies, clotting proteins, hormones and proteins that help maintain the fluid balance of the body.

DEAMINATION

The removal of an amino group from a nucleoside, thereby generating another nucleoside with different base-pairing properties.

TRIGLYCERIDE

Fat compound in the body and in most food that is composed of a glycerol molecule with three fatty-acid chains attached through their hydroxyl groups.

LOW-DENSITY LIPOPROTEIN

Insoluble lipid that is transported in the blood and is associated with cholesterol, phospholipids and protein to form a lipoprotein complex. Low-density lipoprotein (so defined by the type and ratio of protein and fats that it contains) is the main cholesterol carrier in the blood.

CHYLOMICRON

Large lipoprotein complex formed in the intestine that transports fats from the intestine to the liver and to adipose tissue.

MOORING SEQUENCE

An 11-nucleotide motif, which is located 3′ of the cytidine that is edited in APOB mRNA. Both APOBEC1 and ACF are thought to bind to this motif.

IMMUNOGLOBULIN CLASS SWITCHING

A DNA recombination event that only occurs at the immunoglobulin (Ig) heavy chain locus in B cells and is the process by which IgG, IgA and IgE antibodies can be produced instead of IgM.

SOMATIC HYPERMUTATION

The process by which point mutations are introduced into the V(D)J exon of immunoglobulin genes in B cells to create diversity.

PSORIASIS

A chronic skin disease that is characterized by scaling and inflammation. The exact cause is unknown but it is probably a disorder of the immune system.

HYDROLYTIC DEAMINATION

The process in which an amino group is removed from an adenosine residue and is replaced with the oxygen from water to produce inosine and ammonia.

METALLOENZYME

A group of proteins that contain metal-binding sites.

DNA METHYLTRANSFERASE

Enzyme that catalyses the addition of a methyl group to adenine or to cytosine.

INTERFERON

One of a family of proteins that occurs naturally in the body as part of its defence mechanism. It can be subdivided into three distinct types: α, β and γ.

Z-DNA

A left-handed form of DNA that can occur at stretches of alternating G and C bases. So named because of its zig-zag backbone.

PSEUDOURIDINE

One of the most abundant modified nucleosides found in RNA; it is the result of a post-transcriptional isomerization of uridine.

PREFRONTAL CORTEX

Region of the brain that is important for mood states and might harbour abnormalities in patients with unipolar and bipolar depression.

STRIATUM

Region of the brain that receives excitatory input from the cortex, thalamus and midbrain. It has a pivotal role in modulating motor activity and higher cognitive function.

POLYOMA VIRUS

DNA virus that causes subclinical infections early in childhood. It leads to viral latency within the kidney but reactivation occurs in transplant recipients as a result of immunosuppressive therapy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keegan, L., Gallo, A. & O'Connell, M. The many roles of an RNA editor. Nat Rev Genet 2, 869–878 (2001). https://doi.org/10.1038/35098584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35098584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing