Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The origins of maize genetics

Abstract

Early geneticists, and generations since, have been drawn to maize to study basic questions, its curious phenomena and its practical applications. Part of the allure of this unique crop plant lies in the collegiality of the Maize Genetics Cooperation, extending all the way from the 'roaring twenties' of genetics to today.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maize morphology.
Figure 2: Maize reproduction.
Figure 3: Kernel phenotypes and traits.
Figure 4: Mutability at the p1 (pericarp and cob colour) locus.
Figure 5: Intellectual pedigree of early maize geneticists.

References

  1. Correns, C. G. Mendel's Regel uber das Verhalten der Nachkommenschaft der Rassenbastarde. Berichte Deut. Bot. Ges. 18, 158–168 (1900).

    Google Scholar 

  2. De Vries, H. Sur la loi de disjonction des hybrides. Comptes Rendus Séances L'Acad. Sci. 130, 845–847 (1900).

    Google Scholar 

  3. Sturtevant, A. H. A History of Genetics (Harper & Row, New York, 1965).

    Google Scholar 

  4. Sturtevant, A. H. On the choice of material for genetical studies. Stadler Genet. Symp. 1, 51–57 (1971).

    Google Scholar 

  5. Paul, D. & Kimmelman, B. in American Development of Biology (ed. Rainger, R.) 281–310 (Rutgers Univ. Press, New Brunswick, New Jersey, 1986).

    Google Scholar 

  6. Rhoades, M. M. The early years of maize genetics. Annu. Rev. Genet. 18, 1–29 (1984).

    Article  CAS  Google Scholar 

  7. Peterson, P. A. & Bianchi, A. Maize Genetics and Breeding in the 20th Century (World Scientific Publishing Co., Inc., Singapore, 1999).

    Book  Google Scholar 

  8. Correns, C. Untersuchungen uber die Xenien bei Zea Mays. Berichte Deut. Bot. Ges. 17, 410–417 (1899).

    Google Scholar 

  9. De Vries, H. Sur la fecondation hybride de l'albumen. Comptes Rendus Séances L'Acad. Sci. 129, 973–975 (1899).

    Google Scholar 

  10. Webber, H. J. Xenia, or the immediate effect of pollen in maize. US Dept Agr. Div. Veg. Physiol. Path. Bull. 22, 1–44 (1900).

    Google Scholar 

  11. Nawaschin, S. Resultate einer Revision des Befruchtungsforgangs bei Lilium Martagon und Fritillaria tenelle. Bull. Acad. Imp. Sci. St Petersbourg 9, No. 4 (1899).

  12. Guignard, L. Sur les antherozoides et la double copulation sexuelle chez les vegetaux angiosperms. Rev. Gen. Bot. 11, 129–135 (1899); Comptes Rend. Acad. Sci. 128, 869 (1899).

    Google Scholar 

  13. Correns, C. Bastarde zwischen Maisrassen, mit besonderer Berucksichtigung der Xenien. Bibliotheca Bot. 53, 1–161 (1901).

    Google Scholar 

  14. East, E. M. & Hayes, H. K. Inheritance in maize. Conn. Agric. Exp. Stn Bull. 167, 1–142 (1911).

    Google Scholar 

  15. Wheldale, M. The colors and pigments of flowers, with special reference to genetics. Proc. R. Soc. Lond. B 81, 44–60 (1909).

    Article  Google Scholar 

  16. Collins, G. N. A new type of Indian corn from China. USDA Bureau Plant Indust. Bull. 161, 1–30 (1909).

    Google Scholar 

  17. Collins, G. N. & Kempton, J. H. Inheritance of waxy endosperm in hybrids of Chinese maize. Comptes Rendus 4e Congr. Intl Genet. 547–557 (1911).

  18. Sprague, G. F. & Jenkins, M. T. The development of waxy corn for industrial use. Iowa State Coll. J. Sci. 22, 205–213 (1948).

    CAS  Google Scholar 

  19. Nelson, O. E. Jr The waxy locus in maize. II. The location of the controlling element alleles. Genetics 60, 507–524 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Emerson, R. A. The unexpected occurrence of aleurone colors in F2 of a cross between non-colored varieties of maize. Am. Nat. 46, 612–615 (1912).

    Article  Google Scholar 

  21. Hutchison, C. B. The linkage of certain aleurone and endosperm factors in maize, and their relation to other linkage groups. Cornell Univ. Agric. Exp. Stn Mem. 60, 1421–1473 (1922).

    Google Scholar 

  22. Emerson, R. A. The inheritance of sizes and shapes in plants. A preliminary note. Am. Nat. 44, 739–746 (1910).

    Article  Google Scholar 

  23. Emerson, R. A. & East, E. M. The inheritance of quantitative characters in maize. Bull. Agric. Exp. Stn Nebr. 2, 1–120 (1913).

    Google Scholar 

  24. Emerson, R. A. Genetical studies of variegated pericarp in maize. Genetics 2, 1–35 (1917).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Barclay, P. C. & Brink, R. A. The relation between Modulator and Activator in maize. Proc. Natl Acad. Sci. USA 40, 1118–1126 (1954).

    Article  CAS  Google Scholar 

  26. Chopra, S., Athma, P., Li, X. & Peterson, T. A. A maize Myb homolog is encoded by a multicopy gene complex. Mol. Gen. Genet. 260, 372–380 (1998).

    Article  CAS  Google Scholar 

  27. McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl Acad. Sci. USA 36, 344–355 (1950).

    Article  CAS  Google Scholar 

  28. Stadler, L. J. & Emmerling, M. H. Problems of gene structure. III. Relation of unequal crossing over to the interdependence of R-r elements (P) and (S). Science 119, 585 (1954).

    Google Scholar 

  29. Laughnan, J. R. The action of allelic forms of the gene A in maize. II. The relation of crossing over to mutation of Ab. Proc. Natl Acad. Sci. USA 35, 167–178 (1949).

    Article  CAS  Google Scholar 

  30. Rhoades, M. M. Cytoplasmic inheritance of male sterility in Zea mays. Science 73, 340–341 (1931).

    Article  CAS  Google Scholar 

  31. Khush, G. Green revolution: the way forward. Nature Rev. Genet. 2, 815–822 (2001).

    Article  CAS  Google Scholar 

  32. Beckett, J. B. Classification of male-sterile cytoplasms in maize (Zea mays L.). Crop Sci. 11, 724–727 (1971).

    Google Scholar 

  33. Tatum, L. F. The southern corn leaf blight epidemic. Science 171, 1113–1116 (1971).

    Article  CAS  Google Scholar 

  34. Rhoades, M. M. Genic induction of an inherited cytoplasmic difference. Proc. Natl Acad. Sci. USA 29, 327–329 (1943).

    Article  CAS  Google Scholar 

  35. Walbot, V. & Coe, E. H. Nuclear gene iojap conditions a programmed change to ribosome-less plastids in Zea mays. Proc. Natl Acad. Sci. USA 76, 2760–2764 (1979).

    Article  CAS  Google Scholar 

  36. Duvick, D. N. Biotechnology in the 1930s: the development of hybrid maize. Nature Rev. Genet. 2, 69–74 (2001).

    Article  CAS  Google Scholar 

  37. Jones, D. F. The effect of inbreeding and cross-breeding upon development. Proc. Natl Acad. Sci. USA 4, 246–250 (1918).

    Article  CAS  Google Scholar 

  38. Brink, R. A. & Burnham, C. R. Inheritance of semi-sterility in maize. Am. Nat. 63, 301–316 (1929).

    Article  Google Scholar 

  39. Burnham, C. R. Genetical and cytological studies of semisterility and related phenomena in maize. Proc. Natl Acad. Sci. USA 16, 269–277 (1930).

    Article  CAS  Google Scholar 

  40. McClintock, B. A cytological demonstration of the location of an interchange between two non-homologous chromosomes of Zea mays. Proc. Natl Acad. Sci. USA 16, 791–796 (1930).

    Article  CAS  Google Scholar 

  41. McClintock, B. Chromosome morphology in Zea mays. Science 69, 629–630 (1929).

    Article  CAS  Google Scholar 

  42. Longley, A. E. Supernumerary chromosomes in Zea mays. J. Agric. Res. 35, 769–784 (1927).

    Google Scholar 

  43. Roman, H. Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics 32, 391–409 (1947).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kass, L. Ethics in science: preparing students for their career. Plant Sci. Bull. 47, 42–48 (2001).

    Google Scholar 

  45. Emerson, R. A. The genetic relations of plant colors in maize. Cornell Univ. Agric. Exp. Stn Mem. 39, 1–156 (1921).

    Google Scholar 

  46. Emerson, R. A., Beadle, G. W. & Fraser, A. C. A summary of linkage studies in maize. Cornell Univ. Agric. Exp. Stn Mem. 180, 1–83 (1935).

    Google Scholar 

  47. Piternick, L. & Piternick, G. Gregor Mendel's letters to Carl Nageli, 1866–1873. Original in Abhandlungen der Mathemisch-Physischen Klasse der Koniglich Sachsischen Gesellschaft der Wissenschaften 29, 189–265 (1905). Translation in Genetics 35, 1–29 (1950).

    Google Scholar 

  48. Hannah, A. Concerning the law of segregation of hybrids (translation of de Vries, H., 1900). Genetics 35, 30–32 (1950).

    Google Scholar 

  49. Piternick, L. G. Mendel's law concerning the behavior of progeny of varietal hybrids (translation of Correns, C., 1900). Genetics 35, 33–41 (1950).

    Google Scholar 

  50. Kiesselbach, T. A. The structure and reproduction of corn. Nebr. Agric. Exp. Stn Annu. Rep. 161, 1–96 (1949).

    Google Scholar 

  51. Neuffer, M. G., Coe, E. H. & Wessler, S. Mutants of Maize (Cold Spring Harbor Laboratory Press, New York, 1997).

    Google Scholar 

Download references

Acknowledgements

I tip my field-hat, microscope, pipette and keyboard in salute to my generous and spirited colleagues in maize science, from whom freely emanate views of history, real data and analytical critiques that keep the Cooperation informed and stimulated. I am indebted to L. Kass for sharing her historical research and suggestions, and to an anonymous reviewer for valuable insights.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

MaizeDB 

a1

B1

c1

ij1

p1

r1

su1

wx1

y1

FURTHER INFORMATION

Edward H. Coe's lab

MaizeDB

The Maize Genetics Cooperation Newsletter

The Maize Genetics Cooperation Stock Center

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coe, E. The origins of maize genetics. Nat Rev Genet 2, 898–905 (2001). https://doi.org/10.1038/35098524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35098524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing