Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A genetic profile of contemporary Jewish populations


The Jews are an ancient people with a history spanning several millennia. Genetic studies over the past 50 years have shed light on Jewish origins, the relatedness of Jewish communities and the genetic basis of Mendelian disorders among Jewish peoples. In turn, these observations have been used to develop genetic testing programmes and, more recently, to attempt to discover new genes for susceptibility to common diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Patterns of linkage disequilibrium based on time of origin of a disease mutation.


  1. 1

    Shanks, H. Ancient Israel: A Short History from Abraham to the Roman Destruction of the Temple (Prentice-Hall Biblical Archaeological Society, Engelwood Cliffs, New Jersey, 1988).

    Google Scholar 

  2. 2

    Ben-Sasson, H. H. A History of the Jewish People (Harvard Univ. Press, 1976).

    Google Scholar 

  3. 3

    Goodman, R. M. & Motulsky, A. G. Genetic Diseases Among Ashkenazi Jews (Raven, New York, 1979).

    Google Scholar 

  4. 4

    Bonne-Tamir, B. & Adam, A. Genetic Diversity Among Jews (Oxford Univ. Press, 1992).

    Google Scholar 

  5. 5

    Cohen, S. J. D. The Beginnings of Jewishness (Univ. of California Press, Berkeley, California, 1999).

    Google Scholar 

  6. 6

    Stillman, N. The Jews of Arab Lands (The Jewish Publication Society, Philadelphia, Pennsylvania, 1991).

    Google Scholar 

  7. 7

    Weinryb, B. A History of the Jews in Poland (Jewish Publication Society of America, Philadelphia, Pennsylvania, 1973).

    Google Scholar 

  8. 8

    Patai, R. & Patai-Wing, J. The Myth of the Jewish Race (Scribner, New York, 1975).

    Google Scholar 

  9. 9

    Efron, J. M. Defenders of the Race: Jewish Doctors and Race Science in Fin-de-Siècle Europe (Yale Univ. Press, New Haven, Connecticut, 1994).

    Google Scholar 

  10. 10

    Hammer, M. F. et al. Jewish and Middle Eastern non-Jewish populations share a common pool of Y-chromosome biallelic haplotypes. Proc. Natl Acad. Sci. USA 97, 6769–6774 (2000).

    CAS  PubMed  Google Scholar 

  11. 11

    Skorecki, K. et al. Y chromosomes of Jewish priests. Nature 385, 32 (1997).

    CAS  PubMed  Google Scholar 

  12. 12

    Thomas, M. G. et al. Origins of Old Testament priests. Nature 394, 138–140 (1998).

    CAS  PubMed  Google Scholar 

  13. 13

    Thomas, M. G. et al. Y chromosomes traveling south: the Cohen modal haplotype and the origins of the Lemba — the “Black Jews of Southern Africa”. Am. J. Hum. Genet. 66, 674–686 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Cohen, T. et al. Genetic studies on Cochin Jews in Israel. 1. Population data, blood groups, isoenzymes, and HLA determinants. Am. J. Med. Genet. 6, 61–73 (1980).

    CAS  PubMed  Google Scholar 

  15. 15

    Steinberg, A. G. et al. Genetic studies on Cochin Jews in Israel. 2. Gm and Inv data — polymorphism for Gm3 and for Gm1,17,21 without Gm(26). Am. J. Med. Genet. 6, 75–81 (1980).

    CAS  PubMed  Google Scholar 

  16. 16

    Goodman, R. M. Genetic Disorders Among Jewish People (Johns Hopkins Univ. Press, Baltimore, Maryland, 1979).

    Google Scholar 

  17. 17

    Motulsky, A. G. Jewish diseases and origins. Nature Genet. 9, 99–101 (1995).

    CAS  PubMed  Google Scholar 

  18. 18

    Morell, R. J. et al. Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N. Engl. J. Med. 339, 1500–1505 (1998).

    CAS  PubMed  Google Scholar 

  19. 19

    Filon, D. et al. Diversity of β-globin mutations in Israeli ethnic groups reflects recent historic events. Am. J. Hum. Genet. 54, 836–843 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Oron-Karni, V. et al. Diversity of α-globin mutations and clinical presentation of α-thalassemia in Israel. Am. J. Hematol. 65, 196–203 (2000).

    CAS  PubMed  Google Scholar 

  21. 21

    Kerem, E. et al. Highly variable incidence of cystic fibrosis and different mutation distribution among different Jewish ethnic groups in Israel. Hum. Genet. 96, 193–197 (1995).

    CAS  PubMed  Google Scholar 

  22. 22

    Oddoux, C. et al. Mendelian diseases among Roman Jews: implications for the origins of disease alleles. J. Clin. Endocrinol. Metab. 84, 4405–4409 (1999).

    CAS  PubMed  Google Scholar 

  23. 23

    Zelante, L. et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum. Mol. Genet. 6, 1605–1609 (1997).

    CAS  PubMed  Google Scholar 

  24. 24

    Zoller, B., Hillarp, A. & Dahlback, B. Activated protein C resistance caused by a common factor V mutation has a single origin. Thromb. Res. 85, 237–243 (1997).

    CAS  PubMed  Google Scholar 

  25. 25

    Tsui, L. C., Buetow, K. & Buchwald, M. Genetic analysis of cystic fibrosis using linked DNA markers. Am. J. Hum. Genet. 39, 720–728 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Localization of the familial Mediterranean fever gene (FMF) to a 250-kb interval in non-Ashkenazi Jewish founder haplotypes. The French FMF Consortium. Am. J. Hum. Genet. 59, 603–612 (1996).

  27. 27

    Shpilberg, O. et al. One of the two common mutations causing factor XI deficiency in Ashkenazi Jews (type II) is also prevalent in Iraqi Jews, who represent the ancient gene pool of Jews. Blood 85, 429–432 (1995).

    CAS  PubMed  Google Scholar 

  28. 28

    Goldstein, D. B. et al. Age estimates of two common mutations causing factor XI deficiency: recent genetic drift is not necessary for elevated disease incidence among Ashkenazi Jews. Am. J. Hum. Genet. 64, 1071–1075 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Bar-Sade, R. B. et al. The 185delAG BRCA1 mutation originated before the dispersion of Jews in the diaspora and is not limited to Ashkenazim. Hum. Mol. Genet. 7, 801–805 (1998).

    CAS  PubMed  Google Scholar 

  30. 30

    Nichols, W. C. et al. Mutations in the ER–Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93, 61–70 (1998).

    CAS  PubMed  Google Scholar 

  31. 31

    Lindee, M. S. Genetic disease since 1945. Nature Rev. Genet. 1, 236–241 (2000).

    CAS  PubMed  Google Scholar 

  32. 32

    Diaz, G. A. et al. Gaucher disease: the origins of the Ashkenazi Jewish N370S and 84GG acid β-glucosidase mutations. Am. J. Hum. Genet. 66, 1821–1832 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Durst, R. et al. Recent origin and spread of a common Lithuanian mutation, G197del LDLR, causing familial hypercholesterolemia: positive selection is not always necessary to account for disease incidence among Ashkenazi Jews. Am. J. Hum. Genet. 68, 1172–1188 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Ritte, U., Neufeld, E., Broit, M., Shavit, D. & Motro, U. The differences among Jewish communities — maternal and paternal contributions. J. Mol. Evol. 37, 435–440 (1993).

    CAS  PubMed  Google Scholar 

  35. 35

    Blumen, S. C. et al. Oculopharyngeal MD among Bukhara Jews is due to a founder (GCG)9 mutation in the PABP2 gene. Neurology 55, 1267–1270 (2000).

    CAS  PubMed  Google Scholar 

  36. 36

    Lee, H. S. et al. Ancestral origins and worldwide distribution of the PRNP 200K mutation causing familial Creutzfeldt–Jakob disease. Am. J. Hum. Genet. 64, 1063–1070 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Diez, O. et al. Identification of the 185delAG BRCA1 mutation in a Spanish gypsy population. Hum. Genet. 103, 707–708 (1998).

    CAS  PubMed  Google Scholar 

  38. 38

    Ellis, N. A. et al. The Ashkenazic Jewish Bloom syndrome mutation blmAsh is present in non-Jewish Americans of Spanish ancestry. Am. J. Hum. Genet. 63, 1685–1693 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Berg, M. A. et al. Receptor mutations and haplotypes in growth hormone receptor deficiency: a global survey and identification of the Ecuadorean E180 splice mutation in an oriental Jewish patient. Acta Paediatr. Suppl. 399, 112–114 (1994).

    CAS  PubMed  Google Scholar 

  40. 40

    Baer, Y. A History of the Jews in Christian Spain (Jewish Publication Society of America, Philadelphia, Pennsylvania, 1978).

    Google Scholar 

  41. 41

    Zlotogora, J. High frequencies of human genetic diseases: founder effect with genetic drift or selection? Am. J. Med. Genet. 49, 10–13 (1994).

    CAS  PubMed  Google Scholar 

  42. 42

    Rund, D. et al. Evolution of a genetic disease in an ethnic isolate: β-thalassemia in the Jews of Kurdistan. Proc. Natl Acad. Sci. USA 88, 310–314 (1991).

    CAS  PubMed  Google Scholar 

  43. 43

    Cuthbert, A. W., Halstead, J., Ratcliff, R., Colledge, W. H. & Evans, M. J. The genetic advantage hypothesis in cystic fibrosis heterozygotes: a murine study. J. Physiol. 482, 449–454 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Pier, G. B. et al. Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393, 79–82 (1998).

    CAS  PubMed  Google Scholar 

  45. 45

    Stephens, J. C. et al. Dating the origin of the CCR5-Δ32 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet. 62, 1507–1515 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Kaback, M. M. Population-based genetic screening for reproductive counseling: the Tay–Sachs disease model. Eur. J. Pediatr. 159 (Suppl. 3), S192–S195 (2000).

    CAS  PubMed  Google Scholar 

  47. 47

    Genetic testing for cystic fibrosis. National Institutes of Health Consensus Development Conference Statement on genetic testing for cystic fibrosis. Arch. Intern. Med. 159, 1529–1539 (1999).

  48. 48

    Gaucher disease. Current issues in diagnosis and treatment. NIH Technology Assessment Panel on Gaucher Disease. J. Am. Med. Assoc. 275, 548–553 (1996).

  49. 49

    Committee on Genetics. American College of Obstetricians and Gynecologists. ACOG committee opinion. Screening for Canavan disease. Number 212, November 1998. Int. J. Gynaecol. Obstet. 65, 91–92 (1999).

  50. 50

    Hastbacka, J. et al. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nature Genet. 2, 204–211 (1992).

    CAS  PubMed  Google Scholar 

  51. 51

    Ellis, N. A. & German, J. Molecular genetics of Bloom's syndrome. Hum. Mol. Genet. 5, 1457–1463 (1996).

    CAS  PubMed  Google Scholar 

  52. 52

    Blumenfeld, A. et al. Precise genetic mapping and haplotype analysis of the familial dysautonomia gene on human chromosome 9q31. Am. J. Hum. Genet. 64, 1110–1118 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Risch, N. J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Lonjou, C., Collins, A. & Morton, N. E. Allelic association between marker loci. Proc. Natl Acad. Sci. USA 96, 1621–1626 (1999).

    CAS  PubMed  Google Scholar 

  55. 55

    Dunning, A. M. et al. The extent of linkage disequilibrium in four populations with distinct demographic histories. Am. J. Hum. Genet. 67, 1544–1554 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139–144 (1999).

    CAS  Google Scholar 

  57. 57

    Kruglyak, L. Genetic isolates: separate but equal? Proc. Natl Acad. Sci. USA 96, 1170–1172 (1999).

    CAS  PubMed  Google Scholar 

  58. 58

    Kalaydjieva, L. et al. Patterns of inter- and intra-group genetic diversity in the Vlax Roma as revealed by Y chromosome and mitochondrial DNA lineages. Eur. J. Hum. Genet. 9, 97–104 (2001).

    CAS  PubMed  Google Scholar 

  59. 59

    Peltonen, L., Jalanko, A. & Varilo, T. Molecular genetics of the Finnish disease heritage. Hum. Mol. Genet. 8, 1913–1923 (1999).

    CAS  PubMed  Google Scholar 

  60. 60

    Andersen, B. & Zoega, T. Icelandic genetics. Nature Biotechnol. 17, 517 (1999).

    CAS  Google Scholar 

  61. 61

    Jenkins, T. The molecular basis of South African genetic porphyria established at last! S. Afr. Med. J. 87, 733–735 (1997).

    CAS  PubMed  Google Scholar 

  62. 62

    Peelen, T. et al. A high proportion of novel mutations in BRCA1 with strong founder effects among Dutch and Belgian hereditary breast and ovarian cancer families. Am. J. Hum. Genet. 60, 1041–1049 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Johannsson, O. et al. Founding BRCA1 mutations in hereditary breast and ovarian cancer in southern Sweden. Am. J. Hum. Genet. 58, 441–450 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Tonin, P. N. et al. Founder BRCA1 and BRCA2 mutations in French Canadian breast and ovarian cancer families. Am. J. Hum. Genet. 63, 1341–1351 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Weatherall, D. J. Phenotype–genotype relationships in monogenic disease: lessons from the thalassaemias. Nature Rev. Genet. 2, 245–255 (2001).

    CAS  PubMed  Google Scholar 

  66. 66

    Sachar, H. M. The Course of Modern Jewish History (World Publishing Co., Cleveland, Ohio, 1958).

    Google Scholar 

  67. 67

    American Jewish Yearbook (American Jewish Committee, Philadelphia, Pennsylvania, 2000).

  68. 68

    Ritte, U. et al. Mitochondrial DNA affinity of several Jewish communities. Hum. Biol. 65, 359–385 (1993).

    CAS  PubMed  Google Scholar 

  69. 69

    Santachiara Benerecetti, A. S. et al. The common, Near-Eastern origin of Ashkenazi and Sephardi Jews supported by Y-chromosome similarity. Annu. Hum. Genet. 57, 55–64 (1993).

    CAS  Google Scholar 

  70. 70

    Gilad, S. et al. Ataxia-telangiectasia: founder effect among north African Jews. Hum. Mol. Genet. 5, 2033–2037 (1996).

    CAS  PubMed  Google Scholar 

  71. 71

    Tamary, H. et al. Ala244Val is a common, probably ancient mutation causing factor VII deficiency in Moroccan and Iranian Jews. Thromb. Haemost. 76, 283–291 (1996).

    CAS  PubMed  Google Scholar 

  72. 72

    Aksentijevich, I. et al. Mutation and haplotype studies of familial Mediterranean fever reveal new ancestral relationships and evidence for a high carrier frequency with reduced penetrance in the Ashkenazi Jewish population. Am. J. Hum. Genet. 64, 949–962 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Kronn, D., Oddoux, C., Phillips, J. & Ostrer, H. Prevalence of Canavan disease heterozygotes in the New York metropolitan Ashkenazi Jewish population. Am. J. Hum. Genet. 57, 1250–1252 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Sherman, S. L., Aston, C. E., Morton, N. E., Speiser, P. W. & New, M. I. A segregation and linkage study of classical and nonclassical 21-hydroxylase deficiency. Am. J. Hum. Genet. 42, 830–838 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    CAS  Google Scholar 

  76. 76

    Oddoux, C. et al. The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1%. Nature Genet. 14, 188–190 (1996).

    CAS  PubMed  Google Scholar 

  77. 77

    Laken, S. J. et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nature Genet. 17, 79–83 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Anderson, S. L. et al. Familial dysautonomia is caused by mutations of the IKAP gene. Am. J. Hum. Genet. 68, 753–758 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Slaugenhaupt, S. A. et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am. J. Hum. Genet. 68, 598–605 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Nestorowicz, A. et al. Mutations in the sulonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum. Mol. Genet. 5, 1813–1822 (1996).

    CAS  PubMed  Google Scholar 

  81. 81

    Verlander, P. C. et al. Carrier frequency of the IVS4+4 A→T mutation of the Fanconi anemia gene FAC in the Ashkenazi Jewish population. Blood 86, 4034–4038 (1995).

    CAS  PubMed  Google Scholar 

  82. 82

    Parvari, R. et al. Glycogen storage disease type 1a in Israel: biochemical, clinical, and mutational studies. Am. J. Med. Genet. 72, 286–290 (1997).

    CAS  PubMed  Google Scholar 

  83. 83

    Risch, N. et al. Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jews and their recent descent from a small founder population. Nature Genet. 9, 152–159 (1995).

    CAS  PubMed  Google Scholar 

  84. 84

    Shaag, A. et al. Molecular basis of lipoamide dehydrogenase deficiency in Ashkenazi Jews. Am. J. Med. Genet. 82, 177–182 (1999).

    CAS  PubMed  Google Scholar 

  85. 85

    Bargal, R. et al. Mucolipidosis type IV: novel MCOLN1 mutations in Jewish and non-Jewish patients and the frequency of the disease in the Ashkenazi Jewish population. Hum. Mutat. 17, 397–402 (2001).

    CAS  PubMed  Google Scholar 

  86. 86

    Schuchman, E. H. & Miranda, S. R. Niemann–Pick disease: mutation update, genotype/phenotype correlations, and prospects for genetic testing. Genet. Test. 1, 13–19 (1997).

    CAS  PubMed  Google Scholar 

  87. 87

    Bach, G., Tomczak, J., Risch, N. & Ekstein, J. Tay–Sachs screening in the Jewish Ashkenazi population: DNA testing is the preferred procedure. Am. J. Med. Genet. 99, 70–75 (2001).

    CAS  PubMed  Google Scholar 

  88. 88

    Zlotogora, J., Gieselman, V., von Figura, K., Zeigler, M. & Bach, G. Late infantile metachromatic leukodystrophy in Israel. Biomed. Pharmacother. 48, 347–350 (1994).

    CAS  PubMed  Google Scholar 

  89. 89

    Bjorses, P. et al. Genetic homogeneity of autoimmune polyglandular disease type I. Am. J. Hum. Genet. 59, 879–886 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Rosler, A. & White, P. C. Mutations in human 11 β-hydroxylase genes: 11 β-hydroxylase deficiency in Jews of Morocco and corticosterone methyl-oxidase II deficiency in Jews of Iran. J. Steroid Biochem. Mol. Biol. 45, 99–106 (1993).

    CAS  PubMed  Google Scholar 

  91. 91

    Menold, M. M. et al. Evidence for genetic heterogeneity supports clinical differences in congenital myasthenic syndromes. Hum. Hered. 48, 325–332 (1998).

    CAS  PubMed  Google Scholar 

  92. 92

    Mitrani-Rosenbaum, S., Argov, Z., Blumenfeld, A., Seidman, C. E. & Seidman, J. G. Hereditary inclusion body myopathy maps to chromosome 9p1-q1. Hum. Mol. Genet. 5, 159–163 (1996).

    CAS  PubMed  Google Scholar 

  93. 93

    Rosenberg, N. et al. Glanzmann thrombasthenia caused by an 11.2-kb deletion in the glycoprotein IIIa (β3) is a second mutation in Iraqi Jews that stemmed from a distinct founder. Blood 89, 3654–3662 (1997).

    CAS  PubMed  Google Scholar 

  94. 94

    Feliubadalo, L. et al. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. International Cystinuria Consortium. Nature Genet. 23, 52–57 (1999).

    CAS  PubMed  Google Scholar 

  95. 95

    Leitersdorf, E. et al. Frameshift and splice-junction mutations in the sterol 27-hydroxylase gene cause cerebrotendinous xanthomatosis in Jews or Moroccan origin. J. Clin. Invest. 91, 2488–2496 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Halle, D. et al. High prevalence of complement C7 deficiency among healthy blood donors of Moroccan Jewish ancestry. Am. J. Med. Genet. 99, 325–327 (2001).

    CAS  PubMed  Google Scholar 

  97. 97

    Parvari, R. et al. A single-base deletion in the 3′-coding region of glycogen-debranching enzyme is prevalent in glycogen storage disease type IIIA in a population of North African Jewish patients. Eur. J. Hum. Genet. 5, 266–270 (1997).

    CAS  PubMed  Google Scholar 

  98. 98

    Kaufman, M. et al. Tay–Sachs disease and HEXA mutations among Moroccan Jews. Hum. Mutat. 10, 295–300 (1997).

    CAS  PubMed  Google Scholar 

  99. 99

    McNally, E. M. et al. Splicing mutation in dysferlin produces limb-girdle muscular dystrophy with inflammation. Am. J. Med. Genet. 91, 305–312 (2000).

    CAS  PubMed  Google Scholar 

  100. 100

    Avigad, S. et al. A single origin of phenylketonuria in Yemenite Jews. Nature 344, 168–170 (1990).

    CAS  PubMed  Google Scholar 

Download references


I thank J. and S. Rudin for their support, L. Schiffman, N. Risch, C. Oddoux, S. Gross and two anonymous reviewers for their helpful comments.

Author information



Related links

Related links








factor XI


glucocerebrosidase locus


LDL receptor






11-hydroxylase deficiency

21-hydroxylase deficiency


autosomal-recessive non-syndromic hearing loss

Bloom syndrome

Canavan disease

combined factors V and VIII deficiency

corticosterone methyl oxidase II deficiency

Creutzfeldt–Jakob disease

cystic fibrosis

factor VII deficiency

factor XI deficiency

familial dysautonomia

familial Mediterranean fever

Fanconi anaemia

Gaucher disease

glycogen storage disease type I

glycogen storage disease type III

idiopathic torsion dystonia

Laron dwarfism

mucolipidosis IV

Niemann–Pick disease

non-classical congenital adrenal hyperplasia

oculopharyngeal muscular dystrophy

Tay–Sachs disease


Chicago Center for Jewish Genetic Disorders

Genetic testing at NYU School of Medicine

ID Gene

JewishGen: The Home of Jewish Genealogy

Mazor Guide to Jewish Genetic Diseases

National Foundation for Jewish Genetic Diseases

Study of Jewish origins at NYU School of Medicine



Inter-population gene flow.


The joining of genetic lineages to common ancestors when they are traced backwards in time.


(C.E.). A neutral term for the period of time since the birth of Christ.


Mating or marriage within a social or cultural unit.


Random changes in allele frequency that result because the genes appearing in offspring are not a perfectly representative sample of the parental genes (for example, in small populations).


The movement of alleles between local populations owing to the migration of individuals.


A set of genetic markers present on one chromosome.


Protein present on the surface of white cells and most other cells in the body that allows the immune system to recognize self from non-self.


(LD). The condition in which the frequency of a particular haplotype for two loci is significantly greater than that expected from the product of the observed allelic frequencies at each locus.


A class of repetitive DNA that is made up of repeats that are 2–8 nucleotides in length. They can be highly polymorphic and are frequently used as molecular markers in population genetics studies.


The proportion of genotypically mutant organisms that show the mutant phenotype. If all genotypically mutant individuals show the mutant phenotype, then the genotype is said to be completely penetrant.


The study of the conformation of the skull on the basis of the belief that it is indicative of mental faculties and character.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ostrer, H. A genetic profile of contemporary Jewish populations. Nat Rev Genet 2, 891–898 (2001).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing