Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli

Abstract

Sour taste is initiated by protons acting at receptor proteins or channels. In vertebrates, transduction of this taste quality involves several parallel pathways1,2,3,4,5. Here we examine the effects of sour stimuli on taste cells in slices of vallate papilla from rat. From a subset of cells, we identified a hyperpolarization-activated current that was enhanced by sour stimulation at the taste pore. This current resembled Ih found in neurons and cardio-myocytes6,7, a current carried by members of the family of hyperpolarization-activated and cyclic-nucleotide-gated (HCN) channels8,9,10,11,12,13. We show by in situ hybridization and immunohistochemistry that HCN1 and HCN4 are expressed in a subset of taste cells. By contrast, gustducin, the G-protein involved in bitter and sweet taste14, is not expressed in these cells. Lowering extracellular pH causes a dose-dependent flattening of the activation curve of HCN channels and a shift in the voltage of half-maximal activation to more positive voltages. Our results indicate that HCN channels are gated by extracellular protons and may act as receptors for sour taste.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recordings from rat taste cells.
Figure 2: Identification of HCN mRNAs in rat vallate papilla.
Figure 3: Immunohistochemical localization of HCN1 and HCN4 isoforms.
Figure 4: Activation of heterologously expressed HCN1 and HCN4 channels by extracellular protons.

Similar content being viewed by others

References

  1. Gilbertson, T. A., Avenet, P., Kinnamon, S. C. & Roper, S. D. Proton currents through amiloride-sensitive Na channels in hamster taste cells: role in acid transduction. J. Gen. Physiol. 100, 803–824 (1992).

    Article  CAS  Google Scholar 

  2. Kinnamon, S. C., Dionne, V. E. & Beam, K. G. Apical localization of K channels in taste cells provides the basis for sour taste transduction. Proc. Natl Acad. Sci. USA 85, 7023–7027 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Ugawa, S. et al. Receptor that leaves a sour taste in the mouth. Nature 395, 555–556 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Miyamoto, T., Fujiyama, R., Okada, Y. & Sato, T. Sour transduction involves activation of NPPB-sensitive conductance in mouse taste cells. J. Neurophysiol. 80, 1852–1859 (1998).

    Article  CAS  Google Scholar 

  5. Stewart, R. E., Lyall, V., Feldman, G. M., Heck, G. L. & DeSimone, J. A. Acid-induced responses in hamster chorda tympani and intracellular pH tracking by taste receptor cells. Am. J. Physiol. 275, C227–C238 (1998).

    Article  CAS  Google Scholar 

  6. Pape, H. C. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu. Rev. Physiol. 58, 299–327 (1996).

    Article  CAS  Google Scholar 

  7. Trotier, D. & Doving, K. B. Direct influence of the sodium pump on the membrane potential of vomeronasal chemoreceptor neurones in frog. J. Physiol. (Lond.) 490, 611–621 (1996).

    Article  CAS  Google Scholar 

  8. Santoro, B. et al. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93, 717–29 (1998).

    Article  CAS  Google Scholar 

  9. Gauss, R., Seifert, R. & Kaupp, U. B. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 393, 583–587 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Ludwig, A., Zong, X., Jeglitsch, M., Hofmann, F. & Biel, M. A family of hyperpolarization-activated mammalian cation channels. Nature 393, 587–591 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Santoro, B. & Tibbs, G. R. The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann. N. Y. Acad. Sci. 868, 741–764 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Santoro, B. et al. Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J. Neurosci. 20, 5264–75 (2000).

    Article  CAS  Google Scholar 

  13. Kaupp, U. B. & Seifert, R. Molecular diversity of pacemaker ion channels. Annu. Rev. Physiol. 63, 235–237 (2001).

    Article  CAS  Google Scholar 

  14. Wong, G. T., Gannon, K. S. & Margolskee, R. F. Transduction of bitter and sweet taste by gustducin. Nature 381, 796–800 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Monteggia, L. M., Eisch, A. J., Tang, M. D., Kaczmarek, L. K. & Nestler, E. J. Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. Brain Res. Mol. Brain Res. 81, 129–139 (2000).

    Article  CAS  Google Scholar 

  16. DeSimone, J. A., Callaham, E. M. & Heck, G. L. Chorda tympani taste response of rat to hydrochloric acid subject to voltage-clamped lingual receptive field. Am. J. Physiol. 268, C1295–C1300 (1995).

    Article  CAS  Google Scholar 

  17. Pittman, D. W. & Contreras, R. J. Responses of single lingual nerve fibers to thermal and chemical stimulation. Brain Res. 790, 224–235 (1998).

    Article  CAS  Google Scholar 

  18. Boughter, J. D. Jr, Pumplin, D. W., Yu, C., Christy, R. C. & Smith, D. V. Differential expression of α-gustducin in taste bud populations of the rat and hamster. J. Neurosci. 17, 2852–2858 (1997).

    Article  CAS  Google Scholar 

  19. Munsch, T. & Pape, H. C. Modulation of the hyperpolarization-activated cation current of rat thalamic relay neurones by intracellular pH. J. Physiol. (Lond.) 519, 493–504 (1999).

    Article  CAS  Google Scholar 

  20. Zong, X., Stieber, J., Ludwig, A., Hofmann, F. & Biel, M. A single histidine residue determines the pH sensitivity of the pacemaker channel HCN2. J. Biol. Chem. 276, 6313–6319 (2001).

    Article  CAS  Google Scholar 

  21. Seifert, R. et al. Molecular characterization of a slowly gating human hyperpolarization- activated channel predominantly expressed in thalamus, heart, and testis. Proc. Natl Acad. Sci. USA 96, 9391–9396 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Striem, B. J., Naim, M. & Lindemann, B. Generation of cyclic AMP in taste buds of the rat circumvallate papilla in response to sucrose. Cell. Physiol. Biochem. 1, 46–54 (1991).

    Article  CAS  Google Scholar 

  23. Müller, F. et al. Ligand sensitivity of the α2 subunit from the bovine cone cGMP-gated channel is modulated by protein kinase C but not by calmodulin. J. Physiol. (Lond.) 533, 399–409 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Lindemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, D., Seifert, R., Bufe, B. et al. Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 413, 631–635 (2001). https://doi.org/10.1038/35098087

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35098087

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing