Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catastrophic shifts in ecosystems

Abstract

All ecosystems are exposed to gradual changes in climate, nutrient loading, habitat fragmentation or biotic exploitation. Nature is usually assumed to respond to gradual change in a smooth way. However, studies on lakes, coral reefs, oceans, forests and arid lands have shown that smooth change can be interrupted by sudden drastic switches to a contrasting state. Although diverse events can trigger such shifts, recent studies show that a loss of resilience usually paves the way for a switch to an alternative state. This suggests that strategies for sustainable management of such ecosystems should focus on maintaining resilience.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Possible ways in which ecosystem equilibrium states can vary with conditions such as nutrient loading, exploitation or temperature rise.
Figure 2: Two ways to shift between alternative stable states.
Figure 3: External conditions affect the resilience of multi-stable ecosystems to perturbation.
Figure 4: Hysteresis in the response of charophyte vegetation in the shallow Lake Veluwe to increase and subsequent decrease of the phosphorus concentration.
Figure 5: A graphical model60 of alternative stable states in shallow lakes on the basis of three assumptions: (1) turbidity of the water increases with the nutrient level; (2) submerged vegetation reduces turbidity; and (3) vegetation disappears when a critical turbidity is exceeded.
Figure 6: Over the past 9,000 years, average Northern Hemisphere summer insolation (upper panel) has varied gradually owing to subtle variation in the Earth's orbit.
Figure 7: Distinct state shifts occurred in the Pacific Ocean ecosystem around 1977 and 1989.

References

  1. 1

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  2. 2

    May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).

    ADS  Article  Google Scholar 

  3. 3

    Connell, J. H. & Sousa, W. P. On the evidence needed to judge ecological stability or persistence. Am. Nat. 121, 789–824 (1983).

    Article  Google Scholar 

  4. 4

    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).

    Article  Google Scholar 

  5. 5

    Scheffer, M., Hosper, S. H., Meijer, M. L. & Moss, B. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8, 275–279 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Van de Koppel, J., Rietkerk, M. & Weissing, F. J. Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems. Trends Ecol. Evol. 12, 352–356 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Carpenter, S. R. in Ecology: Achievement and Challenge (eds Press, M. C., Huntly, N. & Levin, S.) (Blackwell, London, 2001).

    Google Scholar 

  8. 8

    Nystrom, M., Folke, C. & Moberg, F. Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol. Evol. 15, 413–417 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Rinaldi, S. & Scheffer, M. Geometric analysis of ecological models with slow and fast processes. Ecosystems 3, 507–521 (2000).

    Article  Google Scholar 

  10. 10

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth's ecosystems. Science 277, 494–499 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Carpenter, S. R., Ludwig, D. & Brock, W. A. Management of eutrophication for lakes subject to potentially irreversible change. Ecol. Appl. 9, 751–771 (1999).

    Article  Google Scholar 

  13. 13

    Kuznetsov, Y. A. Elements of Applied Bifurcation Theory (Springer, New York, 1995).

    Book  Google Scholar 

  14. 14

    Vandermeer, J. & Yodzis, P. Basin boundary collision as a model of discontinuous change in ecosystems. Ecology 80, 1817–1827 (1999).

    Article  Google Scholar 

  15. 15

    Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149 (1995); erratum 379, 847 (1996).

    Article  Google Scholar 

  16. 16

    Ellner, S. & Turchin, P. Chaos in a noisy world: New methods and evidence from time-series analysis. Am. Nat. 145, 343–375 (1995).

    Article  Google Scholar 

  17. 17

    Scheffer, M., Rinaldi, S., Gragnani, A., Mur, L. R. & Van Nes, E. H. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78, 272–282 (1997).

    Article  Google Scholar 

  18. 18

    Jeppesen, E. et al. Lake and catchment management in Denmark. Hydrobiologia 396, 419–432 (1999).

    Article  Google Scholar 

  19. 19

    Meijer, M. L., Jeppesen, E., Van Donk, E. & Moss, B. Long-term responses to fish-stock reduction in small shallow lakes: Interpretation of five-year results of four biomanipulation cases in the Netherlands and Denmark. Hydrobiologia 276, 457–466 (1994).

    Article  Google Scholar 

  20. 20

    Knowlton, N. Thresholds and multiple stable states in coral reef community dynamics. Am. Zool. 32, 674–682 (1992).

    Article  Google Scholar 

  21. 21

    Done, T. J. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247, 121–132 (1991).

    Article  Google Scholar 

  22. 22

    McCook, L. J. Macroalgae, nutrients and phase shifts on coral reefs: Scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18, 357–367 (1999).

    Article  Google Scholar 

  23. 23

    Walker, B. H. in Conservation Biology for the Twenty-first Century (eds Weston, D. & Pearl, M.), 121–130 (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  24. 24

    Dublin, H. T., Sinclair, A. R. & McGlade, J. Elephants and fire as causes of multiple stable states in the Serengeti–Mara woodlands. J. Anim. Ecol. 59, 1147–1164 (1990).

    Article  Google Scholar 

  25. 25

    Holmgren, M. & Scheffer, M. El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems 4, 151–159 (2001).

    Article  Google Scholar 

  26. 26

    Wilson, J. B. & Agnew, A. D. Q. Positive-feedback switches in plant communities. Adv. Ecol. Res. 23, 263–336 (1992).

    Article  Google Scholar 

  27. 27

    Walker, B. H. Rangeland ecology: understanding and managing change. Ambio 22, 2–3 (1993).

    Google Scholar 

  28. 28

    Ludwig, D., Walker, B. & Holling, C. S. Sustainability, stability and resilience. Conserv. Ecol. [online] (01 Aug. 01) 〈http://www.consecol.org/vol1/iss1/art7〉 (1997).

  29. 29

    Kassas, M. Desertification: A general review. J. Arid Environ. 30, 115–128 (1995).

    ADS  Article  Google Scholar 

  30. 30

    Tucker, C. J. & Nicholson, S. E. Variations in the size of the Sahara Desert from 1980 to 1997. Ambio 28, 587–591 (1999).

    Google Scholar 

  31. 31

    Rietkerk, M., Van den Bosch, F. & Van de Koppel, J. Site-specific properties and irreversible vegetation changes in semi-arid grazing systems. Oikos 80, 241–252 (1997).

    Article  Google Scholar 

  32. 32

    Nicholson, S. E. Land surface processes and Sahel climate. Rev. Geophys. 38, 117–139 (2000).

    ADS  Article  Google Scholar 

  33. 33

    Zeng, N., Neelin, J. D., Lau, K. M. & Tucker, C. J. Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286, 1537–1540 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Wang, G. L. & Eltahir, E. B. Ecosystem dynamics and the Sahel drought. Geophys. Res. Lett. 27, 795–798 (2000).

    ADS  Article  Google Scholar 

  35. 35

    Wang, G. L. & Eltahir, E. B. Role of vegetation dynamics in enhancing the low-frequency variability of the Sahel rainfall. Water Resour. Res. 36, 1013–1021 (2000).

    ADS  Article  Google Scholar 

  36. 36

    Hoelzmann, P. et al. Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: A data set for the analysis of biogeophysical feedbacks in the climate system. Global Biogeochem. Cy. 12, 35–51 (1998).

    ADS  CAS  Article  Google Scholar 

  37. 37

    Jolly, D. et al. Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years. J. Biogeog. 25, 1007–1027 (1998).

    Article  Google Scholar 

  38. 38

    Claussen, M. et al. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys. Res. Lett. 26, 2037–2040 (1999).

    ADS  Article  Google Scholar 

  39. 39

    Brovkin, V., Claussen, M., Petoukhov, V. & Ganopolski, A. On the stability of the atmosphere–vegetation system in the Sahara/Sahel region. J. Geophys. Res.—Atmos. 103, 31613–31624 (1998).

    ADS  Article  Google Scholar 

  40. 40

    Charney, J. G. The dynamics of deserts and droughts. J. R. Meteorol. Soc. 101, 193–202 (1975).

    ADS  Article  Google Scholar 

  41. 41

    Hare, S. R. & Mantua, N. J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47, 103–145 (2000).

    ADS  Article  Google Scholar 

  42. 42

    Reid, P. C., Edwards, M., Hunt, H. G. & Warner, A. J. Phytoplankton change in the North Atlantic. Nature 391, 546–546 (1998).

    ADS  CAS  Article  Google Scholar 

  43. 43

    Verity, P. G. & Smetacek, V. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130, 277–293 (1996).

    ADS  Article  Google Scholar 

  44. 44

    Cury, P. et al. Small pelagics in upwelling systems: Patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618 (2000).

    Article  Google Scholar 

  45. 45

    Shiomoto, A., Tadokoro, K., Nagasawa, K. & Ishida, Y. Trophic relations in the subarctic North Pacific ecosystem: Possible feeding effect from pink salmon. Mar. Ecol. Prog. Ser. 150, 75–85 (1997).

    ADS  Article  Google Scholar 

  46. 46

    Reid, P. C., Battle, E. -J. V., Batten, S. D. & Brander, K. M. Impacts of fisheries on plankton community structure. ICES J. Mar. Sci. 57, 495–502 (2000).

    Article  Google Scholar 

  47. 47

    Hall, C. A. S., Stanford, J. A. & Hauer, F. R. The distribution and abundance of organisms as a consequence of energy balance along multiple environmental gradients. Oikos 65, 377–390 (2000).

    Article  Google Scholar 

  48. 48

    Taylor, K. Rapid climate change. Am. Sci. 87, 320–327 (1999).

    ADS  Article  Google Scholar 

  49. 49

    Scheffer, M. Ecology of Shallow Lakes (Chapman and Hall, London, 1998).

    Google Scholar 

  50. 50

    Carpenter, S. R. & Pace, M. L. Dystrophy and eutrophy in lake ecosystems: Implications of fluctuating inputs. Oikos 78, 3–14 (1997).

    Article  Google Scholar 

  51. 51

    Ives, A. R. & Jansen, V. A. A. Complex dynamics in stochastic tritrophic models. Ecology 79, 1039–1052 (1998).

    Article  Google Scholar 

  52. 52

    Maler, K. G. Development, ecological resources and their management: A study of complex dynamic systems. Eur. Econ. Rev. 44, 645–665 (2000).

    Article  Google Scholar 

  53. 53

    Schelske, C. L. in Proc. 14th Diatom Symp. 1996 (eds Mayama, S., Idei, M. & Koizumi, I.) 367–382 (Koeltz, Koenigstein, 1999).

    Google Scholar 

  54. 54

    Schelske, C. L. & Brezonik, P. in Restoration of Aquatic Ecosystems (eds Maurizi, S. & Poillon, F.) 393–398 (National Academic Press, Washington DC, 1992).

    Google Scholar 

  55. 55

    Tongway, D. & Ludwig, J. in Landscape Ecology, Function and Management: Principles from Australia's Rangelands (eds Ludwig, J., Tongway, D., Freudenberger, D., Noble, J. & Hodgkinson, K.) 49–61 (CSIRO, Melbourne, 1997).

    Google Scholar 

  56. 56

    Holling, C. S. & Meffe, G. K. Command and control and the pathology of natural resource management. Cons. Biol. 10, 328–337 (1996).

    Article  Google Scholar 

  57. 57

    Paine, R. T., Tegner, M. J. & Johnson, E. A. Compounded perturbations yield ecological surprises. Ecosystems 1, 535–545 (1998).

    Article  Google Scholar 

  58. 58

    Scheffer, M., Brock, W. & Westley, F. Socioeconomic mechanisms preventing optimum use of ecosystem services: an interdisciplinary theoretical analysis. Ecosystems 3, 451–471 (2000).

    CAS  Article  Google Scholar 

  59. 59

    Meijer, M. L. Biomanipulation in the Netherlands—15 Years of Experience. 1–208 (Wageningen Univ., Wageningen, 2000).

    Google Scholar 

  60. 60

    Scheffer, M. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201, 475–486 (1990).

    Article  Google Scholar 

  61. 61

    deMenocal, P. et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Yodzis for his help in improving the clarity of the manuscript. B. Holling played a key role over the past years in stimulating our discussions around the theme of resilience.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marten Scheffer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scheffer, M., Carpenter, S., Foley, J. et al. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001). https://doi.org/10.1038/35098000

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing