Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bose–Einstein condensation on a microelectronic chip


Although Bose–Einstein condensates1,2,3 of ultracold atoms have been experimentally realizable for several years, their formation and manipulation still impose considerable technical challenges. An all-optical technique4 that enables faster production of Bose–Einstein condensates was recently reported. Here we demonstrate that the formation of a condensate can be greatly simplified using a microscopic magnetic trap on a chip5. We achieve Bose–Einstein condensation inside the single vapour cell of a magneto-optical trap in as little as 700 ms—more than a factor of ten faster than typical experiments, and a factor of three faster than the all-optical technique4. A coherent matter wave is emitted normal to the chip surface when the trapped atoms are released into free fall; alternatively, we couple the condensate into an ‘atomic conveyor belt’6, which is used to transport the condensed cloud non-destructively over a macroscopic distance parallel to the chip surface. The possibility of manipulating laser-like coherent matter waves with such an integrated atom-optical system holds promise for applications in interferometry, holography, microscopy, atom lithography and quantum information processing7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The chip and the magnetic potentials that it creates.
Figure 2: Vacuum system.
Figure 3: Time-of-flight absorption images of the atom cloud after 21 ms of free expansion.
Figure 4: Axial column density profile near the transition temperature, taken in configuration C2.
Figure 5: Transport of a BEC on the ‘magnetic conveyor belt’.

Similar content being viewed by others


  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–1690 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Barrett, M. D., Sauer, J. A. & Chapman, M. S. All-optical formation of an atomic Bose–Einstein condensate. Phys. Rev. Lett. 87, 010404-1–010404-4 (2001).

    Article  ADS  Google Scholar 

  5. Reichel, J., Hänsel, W. & Hänsch, T. W. Atomic micromanipulation with magnetic surface traps. Phys. Rev. Lett. 83, 3398–3401 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Hänsel, W., Reichel, J., Hommelhoff, P. & Hänsch, T. W. Magnetic conveyer belt for transporting and merging trapped atom clouds. Phys. Rev. Lett. 86, 608–611 (2001).

    Article  ADS  Google Scholar 

  7. Calarco, T. et al. Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent raps. Phys. Rev. A 61, 022304-1–022304-11 (2000).

    Article  ADS  Google Scholar 

  8. Weinstein, J. D. & Libbrecht, K. G. Microscopic magnetic traps for neutral atoms. Phys. Rev. A 52, 4004–4009 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Ott, H., Fortagh, J., Schlotterbeck, G., Grossmann, A. & Zimmermann, C. Bose–Einstein condensation in a surface microtrap. Phys. Rev. Lett. (in the press).

  10. Müller, D., Anderson, D. Z., Grow, R. J., Schwindt, P. D. D. & Cornell, E. A. Guiding neutral atoms around curves with lithographically patterned current-carrying wires. Phys. Rev. Lett. 83, 5194–5197 (1999).

    Article  ADS  Google Scholar 

  11. Dekker, N. H. et al. Guiding neutral atoms on a chip. Phys. Rev. Lett. 84, 1124–1127 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Müller, D. et al. Waveguide atom beamsplitter for laser-cooled neutral atoms. Opt. Lett. 25, 1382–1384 (2000).

    Article  ADS  Google Scholar 

  13. Cassettari, D., Hessmo, B., Folman, R., Maier, T. & Schmiedmayer, J. Beam splitter for guided atoms. Phys. Rev. Lett. 85, 5483–5487 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Reichel, J., Hänsel, W., Hommelhoff, P. & Hänsch, T. W. Applications of integrated magnetic microtraps. Appl. Phys. B 72, 81–89 (2001).

    Article  ADS  Google Scholar 

  15. Ketterle, W. & van Druten, N. J. in Advances in Atomic, Molecular and Optical Physics Vol. 37 (eds Bederson, B. & Walther, H.) 181–236 (Academic, San Diego, 1996).

    Google Scholar 

  16. Drndić, M., Johnson, K. S., Thywissen, J. H., Prentiss, M. & Westervelt, R. M. Micro-electromagnets for atom manipulation. Appl. Phys. Lett. 72, 2906–2908 (1998).

    Article  ADS  Google Scholar 

  17. Fortagh, J., Ott, H., Grossmann, A. & Zimmermann, C. Miniaturized magnetic guide for neutral atoms. Appl. Phys. B 70, 701–708 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Anderson, B. P. & Kasevich, M. A. Loading a vapor-cell magneto-optic trap using light-induced atom desorption. Phys. Rev. A 63, 023404-1–023404-4 (2001).

    Article  ADS  Google Scholar 

  19. Petrov, D. S., Shlyapnikov, G. V. & Walraven, J. T. M. Phase-fluctuating 3D Bose–Einstein condensates in elongated traps. Phys. Rev. Lett. 87, 050404-1–050404-4 (2001).

    Article  ADS  Google Scholar 

  20. Dettmer, S. et al. Observation of phase fluctuations in Bose–Einstein condensates. Phys. Rev. Lett. (in the press); preprint cond-mat/0105525 at 〈〉 (2001).

  21. Henkel, C., Pötting, S. & Wilkens, M. Loss and heating of particles in small and noisy traps. Appl. Phys. B 69, 379–387 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Cornell, E. A., Ensher, J. R. & Wieman, C. E. in Proc. Int. School of Physics “Enrico Fermi”, Course CXL (eds Inguscio, M., Stringari, S. & Wieman, C.) 15–66 (IOS, Amsterdam, 1999).

    Google Scholar 

  23. Hinds, E. A., Vale, C. J. & Boshier, M. G. Two-wire waveguide and interferometer for cold atoms. Phys. Rev. Lett. 86, 1462–1465 (2001).

    Article  ADS  CAS  Google Scholar 

  24. Hänsel, W., Reichel, J., Hommelhoff, P. & Hänsch, T. W. Trapped-atom interferometer in a magnetic microtrap. Phys. Rev. A (in the press).

  25. Folman, R. et al. Controlling cold atoms using nanofabricated surfaces: Atom chips. Phys. Rev. Lett. 85, 5483–5487 (2001).

    Google Scholar 

Download references


This work was supported in part by the European Union under the IST programme (ACQUIRE project).

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Hänsel, W., Hommelhoff, P., Hänsch, T. et al. Bose–Einstein condensation on a microelectronic chip. Nature 413, 498–501 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing