Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Light interference from single atoms and their mirror images

Abstract

A single atom emitting single photons is a fundamental source of light. But the characteristics of this light depend strongly on the environment of the atom1,2. For example, if an atom is placed between two mirrors, both the total rate and the spectral composition of the spontaneous emission can be modified. Such effects have been observed using various systems: molecules deposited on mirrors3, dye molecules in an optical cavity4, an atom beam traversing a two-mirror optical resonator5,6,7,8, single atoms traversing a microwave cavity9,10,11 and a single trapped electron12. A related and equally fundamental phenomenon is the optical interaction between two atoms of the same kind when their separation is comparable to their emission wavelength. In this situation, light emitted by one atom may be reabsorbed by the other, leading to cooperative processes in the emission13,14. Here we observe these phenomena with high visibility by using one or two single atom(s), a collimating lens and a mirror, and by recording the individual photons scattered by the atom(s). Our experiments highlight the intimate connection between one-atom and two-atom effects, and allow their continuous observation using the same apparatus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up (main figure) and relevant levels, transition wavelengths, and linewidths of Ba+ (inset).
Figure 2: Self-interference in fluorescence of a single atom: photon count rate at PM1 versus mirror displacement (points).
Figure 3: Interference fringes at 493 nm (a) and simultaneously recorded fluorescence at 650 nm transmitted through the mirror (b).
Figure 4: Interference fringes as in Fig. 2 but now with two ions, each interfering with the mirror image of the other.

Similar content being viewed by others

References

  1. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  2. Milonni, P. W. The Quantum Vacuum Ch. 6 (Academic, San Diego, 1994).

    Book  Google Scholar 

  3. Drexhage, K. H. in Progress in Optics (ed. Wolf, E.) Vol. 12, 163–232 (North-Holland, Amsterdam, 1974).

    Google Scholar 

  4. DeMartini, F., Innocenti, G., Jacobovitz, G. R. & Mataloni, P. Anomalous spontaneous emission time in a microscopic optical cavity. Phys. Rev. Lett. 59, 2955–2958 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Jhe, W. et al. Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space. Phys. Rev. Lett. 58, 666–669 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Heinzen, D. J., Childs, J. J., Thomas, J. F. & Feld, M. S. Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator. Phys. Rev. Lett. 58, 1320–1323 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Hood, C. J., Lynn, T. W., Doherty, A. C., Parkins, A. S. & Kimble, H. J. The atom-cavity microscope: Single atoms bound in orbit by single photons. Science 287, 1447–1453 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Pinkse, P. W. H., Fischer, T., Maunz, P. & Rempe, G. Trapping an atom with single photons. Nature 404, 365–368 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Goy, P., Raimond, J. M., Gross, M. & Haroche, S. Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett. 50, 1903–1906 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Hulet, R. G., Hilfer, E. S. & Kleppner, D. Inhibited spontaneous emission by a Rydberg atom. Phys. Rev. Lett. 55, 2137–2140 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Rempe, G., Walther, H. & Klein, N. Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 58, 353–356 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Gabrielse, G. & Dehmelt, H. G. Observation of inhibited spontaneous emission. Phys. Rev. Lett. 55, 67–70 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  CAS  Google Scholar 

  14. DeVoe, R. G. & Brewer, R. G. Observation of superradiant and subradiant spontaneous emission of two trapped ions. Phys. Rev. Lett. 76, 2049–2052 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Nagourney, W., Sandberg, J. & Dehmelt, H. Shelved optical electron amplifier: Observation of quantum jumps. Phys. Rev. Lett. 56, 2797–2799 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Sauter, Th., Neuhauser, W., Blatt, R. & Toschek, P. E. Observation of quantum jumps. Phys. Rev. Lett. 57, 1696–1698 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Bergquist, J. C., Hulet, R. G., Itano, W. M. & Wineland, D. J. Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699–1702 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Diedrich, F. & Walther, H. Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58, 203–206 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Moerner, W. E. in Atomic Physics 14 (eds Wineland, D. J., Wieman, C. E. & Smith, S. J.) AIP Conf. Proc. Vol. 323, 467–486 (AIP Press, New York, 1995).

    Google Scholar 

  21. Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, Oxford, 1983).

    MATH  Google Scholar 

  22. Raab, C. et al. Diode laser spectrometer at 493 nm for single trapped Ba+ ions. Appl. Phys. B 67, 683–688 (1998); Appl. Phys. B 69, 253 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Raab, C. et al. Motional sidebands and direct measurement of the cooling rate in the resonance fluorescence of a single trapped ion. Phys. Rev. Lett. 85, 538–541 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Schubert, M., Siemers, I., Blatt, R., Neuhauser, W. & Toschek, P. E. Transient internal dynamics of a multilevel ion. Phys. Rev. A 52, 2994–3006 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Zoller, D. Leibfried and G. Morigi for helpful discussions. We gratefully acknowledge support by the European Commission (TMR network QSTRUCT), by the Austrian Science Fund (FWF), and by the Institut für Quanteninformation GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Eschner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eschner, J., Raab, C., Schmidt-Kaler, F. et al. Light interference from single atoms and their mirror images. Nature 413, 495–498 (2001). https://doi.org/10.1038/35097017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35097017

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing