Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura

Abstract

Thrombotic thrombocytopenic purpura (TTP) is a life-threatening systemic illness of abrupt onset and unknown cause. Proteolysis of the blood-clotting protein von Willebrand factor (VWF) observed in normal plasma is decreased in TTP patients. However, the identity of the responsible protease and its role in the pathophysiology of TTP remain unknown. We performed genome-wide linkage analysis in four pedigrees of humans with congenital TTP and mapped the responsible genetic locus to chromosome 9q34. A predicted gene in the identifed interval corresponds to a segment of a much larger transcript, identifying a new member of the ADAMTS family of zinc metalloproteinase genes (ADAMTS13). Analysis of patients' genomic DNA identified 12 mutations in the ADAMTS13 gene, accounting for 14 of the 15 disease alleles studied. We show that deficiency of ADAMTS13 is the molecular mechanism responsible for TTP, and suggest that physiologic proteolysis of VWF and/or other ADAMTS13 substrates is required for normal vascular homeostasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pedigrees used for linkage analysis.
Figure 2: Plasma VWF-cleaving protease levels.
Figure 3: Identification of the ADAMTS13 gene.
Figure 4: Northern and RT-PCR analysis of ADAMTS13.
Figure 5: ADAMTS13 mutations in TTP patients.

References

  1. 1

    Cines, D. B., Konkle, B. A. & Furlan, M. Thrombotic thrombocytopenic purpura: a paradigm shift? Thromb. Haemost. 84, 528–535 (2000).

  2. 2

    George, J. N. How I treat patients with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Blood 96, 1223–1229 (2000).

  3. 3

    Rock, G. A. et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. N. Engl. J. Med. 325, 393–397 (1991).

  4. 4

    Moake, J. L. et al. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N. Engl. J. Med. 307, 1432–1435 (1982).

  5. 5

    Tsai, H. M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 87, 4235–4244 (1996).

  6. 6

    Furlan, M., Robles, R. & Lämmle, B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 87, 4223–4234 (1996).

  7. 7

    Tsai, H.-M. & Lian, E. C. Y. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N. Engl. J. Med. 339, 1585–1594 (1998).

  8. 8

    Tsai, H.-M., Rice, L., Sarode, R., Chow, T. W. & Moake, J. L. Antibody inhibitors to von Willebrand factor metalloproteinase and increased binding of von Willebrand factor to platelets in ticlopidine-associated thrombotic thrombocytopenic purpura. Ann. Intern. Med. 132, 794–799 (2000).

  9. 9

    Bennett, C. L. et al. Thrombotic thrombocytopenic purpura associated with clopidogrel. N. Engl. J. Med. 342, 1773–1777 (2000).

  10. 10

    Furlan, M. et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N. Engl. J. Med. 339, 1578–1584 (1998).

  11. 11

    Burns, E. R. & Zucker-Franklin, D. Pathologic effects of plasma from patients with thrombotic thrombocytopenic purpura on platelets and cultured vascular endothelial cells. Blood 60, 1030–1037 (1982).

  12. 12

    Siddiqui, F. A. & Lian, E. C. Novel platelet-agglutinating protein from a thrombotic thrombocytopenic purpura plasma. J. Clin. Invest 76, 1330–1337 (1985).

  13. 13

    Mitra, D. et al. Thrombotic thrombocytopenic purpura and sporadic hemolytic-uremic syndrome plasmas induce apoptosis in restricted lineages of human microvascular endothelial cells. Blood 89, 1224–1234 (1997).

  14. 14

    Mannucci, P. M. et al. Enhanced proteolysis of plasma von Willebrand factor in thrombotic thrombocytopenic purpura and the hemolytic uremic syndrome. Blood 74, 978–983 (1989).

  15. 15

    Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

  16. 16

    Broman, K. W., Murray, J. C., Sheffield, V. C., White, R. L. & Weber, J. L. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am. J. Hum. Genet. 63, 861–869 (1998).

  17. 17

    Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  18. 18

    Matsushita, M. & Fujita, T. Ficolins and the lectin complement pathway. Immunol. Rev. 180, 78–85 (2001).

  19. 19

    Nagase, T. et al. Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res. 5, 31–39 (1998).

  20. 20

    Blobel, C. P. Metalloprotease-disintegrins: links to cell adhesion and cleavage of TNFα and Notch. Cell 90, 589–592 (1997).

  21. 21

    Kaushal, G. P. & Shah, S. V. The new kids on the block: ADAMTSs, potentially multifunctional metalloproteinases of the ADAM family. J. Clin. Invest. 105, 1335–1337 (2000).

  22. 22

    Hurskainen, T. L., Hirohata, S., Seldin, M. F. & Apte, S. S. ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM-TS family. J. Biol. Chem. 274, 25555–25563 (1999).

  23. 23

    Tang, B. L. ADAMTS: a novel family of extracellular matrix proteases. Int. J. Biochem. Cell Biol. 33, 33–44 (2001).

  24. 24

    Tang, B. L. & Hong, W. ADAMTS: a novel family of proteases with an ADAM protease domain and thrombospondin 1 repeats. FEBS Lett. 445, 223–225 (1999).

  25. 25

    Colige, A. et al. Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am. J. Hum. Genet. 65, 308–317 (1999).

  26. 26

    Shindo, T. et al. ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. J. Clin. Invest. 105, 1345–1352 (2000).

  27. 27

    Tortorella, M. D. et al. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 284, 1664–1666 (1999).

  28. 28

    Fernandes, R. J. et al. Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J. Biol. Chem. 276, 31502–31509 (2001).

  29. 29

    Kuno, K. et al. Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J. Biol. Chem. 272, 556–562 (1997).

  30. 30

    Bork, P. & Beckmann, G. The CUB domain. A widespread module in developmentally regulated proteins. J. Mol. Biol. 231, 539–545 (1993).

  31. 31

    Tsai, H.-M. et al. Proteolytic cleavage of recombinant type 2A von Willebrand factor mutants R834W and R834Q: Inhibition by doxycycline and by monoclonal antibody VP-1. Blood 89, 1954–1962 (1997).

  32. 32

    Upshaw, J. D. Jr Congenital deficiency of a factor in normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N. Engl. J. Med. 298, 1350–1352 (1978).

  33. 33

    Zimmerman, T. S., Dent, J. A., Ruggeri, Z. M. & Hannini, L. H. Subunit composition of plasma von Willebrand factor. J. Clin. Invest. 77, 947–951 (1986).

  34. 34

    Lyons, S. E., Bruck, M. E., Bowie, E. J. W. & Ginsburg, D. Impaired intracellular transport produced by a subset of type IIA von Willebrand disease mutations. J. Biol. Chem. 267, 4424–4430 (1992).

  35. 35

    Fujikawa, K., Suzuki, H., McMullen, B. & Chung, D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 98, 1662–1666 (2001).

  36. 36

    Gerritsen, H. E., Robles, R., Lämmle, B. & Furlan, M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood 98, 1654–1661 (2001).

  37. 37

    Tsai, H. M., Li, A. & Rock, G. Inhibitors of von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura. Clin. Lab. 47, 387–392 (2001).

  38. 38

    Schaffer, A. A., Gupta, S. K., Shriram, K. & Cottingham, R. W. Jr Avoiding recomputation in linkage analysis. Hum. Hered. 44, 225–237 (1994).

  39. 39

    O'Connell, J. R. & Weeks, D. E. The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nature Genet. 11, 402–408 (1995).

  40. 40

    Ginsburg, D. et al. Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization. Science 228, 1401–1406 (1985).

Download references

Acknowledgements

We thank S. J. Weiss for comments on the manuscript; R. L. Nagel, I. I. Sussman, T.-P. Lee, J. Ott and J. E. Sadler for advice and encouragement; and A. Li and S. K. Uniacke for technical assistance. This work was supported in part by grants from the National Institutes of Health to H.-M.T., D.G., T.F. and W.C.N.; D.G. is an investigator of the Howard Hughes Medical Institute.

Author information

Correspondence to David Ginsburg.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Levy, G., Nichols, W., Lian, E. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413, 488–494 (2001). https://doi.org/10.1038/35097008

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.