
following year on a short expedition to ob-
serve whether riboflavin deficiency was relat-
ed to snow blindness among the Canadian
Inuit. It is reported that he failed to keep any
written record in his diaries but embellished
the tale in later life to suggest that he had joined
the expedition because he was interested in the
fact that the Inuit diet was high in fat, rich in
essential fatty acids, and yet the Inuit were free
from heart disease. During this period of his
life, Sinclair’s work was concerned with thia-
mine and diseases of the nervous system, and
there was no evidence of his having any inter-
est in cardiovascular disease and dietary fat.
His epic letter to the Lancet in 1956, in which
he suggested that cardiovascular disease was
caused by a deficiency of essential fatty acids,
was an important stimulus to future research. 

But Sinclair was blinkered by the deficien-
cy paradigm. And the book perpetuates the
myth that he was responsible for drawing
attention to the cardioprotective properties
of omega-3 fatty acids. What he failed to note
was that the balance of omega-6 to omega-3
fatty acids was important to health. Indeed,
for many years he promoted the consump-
tion of a diet high in omega-6 fatty acids. The
major impetus for cardiovascular research on
the omega-3 fatty acids arose from the work
of Salvador Moncada and John Vane on
prostacyclin, and Philip Needleman on
thromboxane, published in 1976, three years
before Sinclair embarked on his Eskimo diet
to demonstrate the effects of omega-3 fatty
acids from fish oils on haemostasis.

Sinclair’s life-long ambition was to estab-
lish a department of nutrition at Oxford. He
was appointed reader in human nutrition
there in 1951. There is little doubt that he was
an able scholar, but his ability as a research
scientist is questionable because of his lack of
attention to detail and failure to publish his
results in peer-reviewed journals. He was a
prolific letter-writer and collector of manu-
scripts (including a collection of erotica)
and, following his death, these sold for more
than £85,000 (US$124,000). 

Like a few other famous nutritionists,
such as Boyd Orr and Robert McCarrison,
Sinclair liked to dabble in the politics of food
and influence national policy. But his out-
pourings tended to be based on belief and
theory rather than evidence and he was
openly contemptuous of the work of his con-
temporaries, such as John Yudkin and Elsie
Widdowson. But to his credit, Sinclair truly
understood the complexity of the relation-
ship between diet and health and recognized
the need for a multidisciplinary approach. 

As a scientist, he came to be regarded as a
dilettante; his research lacked focus and was
unsystematic. This, coupled with his failure to
complete projects and produce peer-reviewed
publications, and his sniping at influential
contemporaries, eventually resulted in his
ejection from Oxford’s  Department of Bio-
chemistry in 1956 by Sir Hans Krebs, and his

readership was not renewed in 1958. For the
rest of his working life, Sinclair remained in
the wilderness of his self-styled National Insti-
tute of Nutrition, which was situated in the
grounds of his home at Lady Place in Sutton
Courtenay. On his death, he bequeathed his
estate to establish a chair in nutrition at
Oxford which the university declined. The
offer was eventually taken up by the Universi-
ty of Reading, where the Hugh Sinclair Nutri-
tion Unit thrives under Christine Williams.

This is no detective story: there are no 
elegantly designed experiments or startling
discoveries. It is a salutary warning to nutri-
tionists that scientific progress is made by
good experimental design and meticulous
attention to detail and not by travelling the
world on lecture tours. n

Tom Sanders is in the Department of Nutrition &
Dietetics, King’s College London, Franklin-Wilkins
Building, Stamford Street, London SE1 9NN, UK.
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Mathematical Mountaintops: The
Five Most Famous Problems 
of All Time
by John Casti
Oxford University Press: 2001. 288 pp.
£19.95, $25

Simon Singh

The recent boom in mathematics bestsellers
has contributed a great deal towards raising
the public profile of the subject. But such
books ignore a significant section of potential
readers, namely those who have more of a
mathematical background than the general
reader but who are not professional math-
ematicians. Such mathematical enthusiasts
have no doubt enjoyed some of the popular
books, but would really prefer a more techni-
cal treatment. This is exactly what John Casti
provides in Mathematical Mountaintops. It is
neither a textbook nor a pop maths book,
rather it is a serious in-depth look at the 
great problems of mathematics.

Casti has picked “the five most famous
problems of all time”, and spends 30 to 40
pages describing each one. The problems are
Hilbert’s tenth problem, the four-colour
problem, the continuum hypothesis, the
Kepler conjecture and Fermat’s last theorem.
Each of these has now been solved, so, in
addition to outlining the problem, the
author is able to explain the solution and
recount the story behind it. Four of the prob-
lems have been written about extensively
elsewhere, but perhaps not with Casti’s 
balance of technical explanation and back-
ground narrative.

Casti’s remaining problem, the Kepler con-
jecture, has (to my knowledge) not been writ-
ten about since the recent announcement that
it has been proved, and provides perhaps the
most interesting chapter. The problem dates
back to 1606, when Johannes Kepler posed a
question in a paper for his patron Johann
Matthäus Wacker of Wackenfels, Knight
Bachelor. Kepler asked, what is the most effi-
cient way to stack spheres so as to minimize the
spaces between them? Alternatively, what is
the best way to pack oranges in an infinite box?
Kepler proposed that the best arrangement
was the face-centred cubic lattice, in which
every sphere in the first layer is surrounded by
six others, and each subsequent layer is built by
putting spheres in the dimples of the layer
below. This arrangement has a packing effi-
ciency of 74.048%. Grocers, who traditionally
stack oranges in this way, suspected that Kepler
was right, but it took mathematicians almost
four centuries to prove it.

There were some notable milestones along
the way. In 1694, Isaac Newton and the Scot-
tish astronomer James Gregory argued about
the sphere-kissing problem: what is the maxi-
mum number of spheres you can place simul-
taneously in contact with a central sphere?
Newton said that the answer was twelve,
which is easily achievable, but Gregory was
convinced that it was possible to squeeze in a
thirteenth sphere. Newton turned out to be
right, but this took 180 years to prove.

The Kepler conjecture was eventually
proved in 1998 by Thomas Hales of the 
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University of Michigan, following an
approach developed in the 1950s by the Hun-
garian mathematician Lázlo Fejes Tóth. Hales
showed that it was possible to determine the
maximum packing efficiency by analysing a
cluster of just 50 spheres. Each sphere has a
position in three-dimensional space, so the
packing efficiency depends on an equation
containing 150 variables. Maximize the equa-
tion and you have the maximum packing effi-
ciency, although this is not a trivial problem. 

Hales and his graduate student Samuel
Ferguson maximized the equation, thanks to
some clever mathematical short-cuts and a
tremendous computing effort which used a
program that relied on three gigabytes of
storage. The fact that Hales’s proof relies so
much on a computer gives rise to one of the
most interesting aspects of Casti’s book,
namely the validity of computer proof.

In fact, although each chapter is about a
particular problem, these problems are used
to convey broader ideas about the nature of
mathematics in general, its motivation and
objectives, its culture and rules. Over the past
25 years, the use of computers has changed
the nature of mathematics, solving some pre-
viously intractable problems, but sowing dis-
cord within the mathematical community.

For example, Casti writes about the four-
colour problem, which was also solved with
the aid of a computer. After Kenneth Appel
and Wolfgang Haken proved it in 1976, their
lectures were sometimes met with hostility
from their colleagues and some professors
barred their graduate students from talking
to the notorious duo because this was a com-
puter proof, not a traditional proof. A
rumour began to spread that there was a bug
in the program, but no bug was ever found.
In fact, it was the hand-generated part of the
proof that contained errors, none of which
turned out to be serious.

Casti explains that a good proof should
satisfy three criteria. First, it should be con-
vincing — in other words, mathematicians
should believe it when they see it. Second, it
should be formalizable, which means it can

be incorporated within an established logical
framework. Third, it should be surveyable,
or capable of being understood, studied,
communicated and verified by rational
analysis. However, a computer proof fails to
satisfy the third requirement, at least in any
traditional sense. In the past, mathemati-
cians could work through a proof line by line
and explain it to one another. In a computer
proof, the broad approach can be checked,
but the detailed calculations are embedded
within computer code and can be performed
only by a microprocessor. The proof, to some
extent, has to be taken on trust.

For readers who are particularly inspired
by Mathematical Mountaintops and who
have some spare time, Casti’s final chapter
briefly discusses the unsolved Clay Institute
problems. Last year, the Clay Mathematics
Institute held a press conference and identi-
fied seven problems that were crucial to
mathematics in the new millennium. This
resonates with German mathematician
David Hilbert’s list of outstanding problems
announced in 1900. Whoever solves any of
the Clay problems will win a prize of $1 mil-
lion. But more importantly, they will earn a
place in mathematical history and perhaps
their own chapter in a subsequent edition of
Mathematical Mountaintops. n

Simon Singh is a science journalist and broadcaster
based in London. He is author of The Code Book:
The Secret History of Codes & Code-Breaking
(Fourth Estate) and Fermat’s Last Theorem: The
Quest to Solve the World's Greatest
Mathematical Problem (Fourth Estate).

Is anyone out there
listening?
The World According to Pimm: 
A Scientist Audits the Earth
by Stuart Pimm
McGraw-Hill: 2001. 304 pp. £18.99, $24.95

Harold Mooney

Those who study global change are well
versed in the sobering statistics of the enor-
mous impact of humans on the Earth — the
dramatic change in the chemistry of the
atmosphere, the massive alteration of the
surface of the land, the diversion and
despoiling of a large fraction of the available
fresh water, the depletion of ocean fisheries,
the homogenization of the Earth’s biota and
the extirpation of large numbers of species.
These scientists share a sense of frustration,
however, about the fact that the general pub-
lic and policy-makers are not grasping the
significance of these changes nor acting to
alter these trajectories for the well-being of
future generations. In The World According
to Pimm, Stuart Pimm is attempting to
enlarge the army of scientists working on

these issues and to engage the public in the
dialogue about what is happening to the
biotic resources of the Earth and how we
need to change our trajectory of develop-
ment in order to build a sustainable world. 

To accomplish his task, Pimm has written
an engaging and important book. He might
well have called it “The World According to
Peter, Paul and Pauly as viewed by Pimm”, as
the bulk of the book is devoted to an analysis
of studies involving Peter Vitousek, Paul
Ehrlich and Daniel Pauly. The book takes on
a bold challenge — an accounting of the pro-
ductive capacity of both the land and of the
oceans and how humans have modified it.
Pimm then documents the extent to which
humans are utilizing the available fresh water
and, finally, the impact of humans on the bio-
diversity of the Earth. He uses very simple
mathematics and language to drive home the
point that humans have very substantially
modified the Earth’s biotic resources.

The first part of the book is based on the
dramatic retelling of the story first published
by Vitousek and colleagues in 1986 in Bio-
Science, in which they calculated that
humans already use 40% of the primary pro-
ductivity of the land. That is a sobering fig-
ure in view of the projections of growth of
the human population during this century.
There was some difficulty in getting this
penetrating study published, but once it was,
it was used widely. For quite a while it was
impossible to go to a meeting related to the
environment where the statistics of this
paper were not used in the opening address.
Subsequent attempts to check and recalcu-
late the numbers, as Pimm has done, have
borne out the original thesis. Pimm’s recal-
culations are engaging; he does a very good
job of making sure that the general reader
can clearly understand the basis for these
estimates of human use of the biosphere.  

The second part of the book deals with
human use of the Earth’s water resources and
builds on work by Ehrlich and his colleagues
Sandra Postel and Gretchen Daily. They have
shown that humans are using a sixth of the
total estimated runoff (50% of that avail-
able), and in doing so have drastically altered
the Earth’s rivers — its plumbing system —
especially in the Northern Hemisphere.

The work of Vitousek and colleagues
inspired Pauly and a colleague to do a similar
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