Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA topoisomerase IIα is required for RNA polymerase II transcription on chromatin templates

Abstract

In the nucleus of the cell, core RNA polymerase II (pol II) is associated with a large complex called the pol II holoenzyme (holo-pol)1,2. Transcription by core pol II in vitro on nucleosomal templates is repressed compared with that on templates of histone-free naked DNA3,4,5. We found that the transcriptional activity of holo-pol, in contrast to that of core pol II, is not markedly repressed on chromatin templates. We refer to this property of holo-pol as chromatin-dependent coactivation (CDC). Here we show that DNA topoisomerase IIα is associated with the holo-pol and is a required component of CDC. Etoposide and ICRF-193, specific inhibitors of topoisomerase II, blocked transcription on chromatin templates, but did not affect transcription on naked templates. Addition of purified topoisomerase IIα reconstituted CDC activity in reactions with core pol II. These findings suggest that transcription on chromatin templates results in the accumulation of superhelical tension, making the relaxation activity of topoisomerase II essential for productive RNA synthesis on nucleosomal DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pol II holoenzyme is qualitatively different from core pol II for transcription on chromatin templates.
Figure 2: Topoisomerase IIα associated with holo-pol is required for CDC.
Figure 3: Topoisomerase IIα rescues transcriptional activity on chromatin by core pol II.
Figure 4: Model for requirement of topoisomerase IIα activity in pol II transcription.

Similar content being viewed by others

References

  1. Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Koleske, A. J. & Young, R. A. An RNA polymerase II holoenzyme responsive to activators. Nature 368, 466–469 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Laybourn, P. J. & Kadonaga, J. T. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254, 238–245 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. LeRoy, G., Orphanides, G., Lane, W. S. & Reinberg, D. Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282, 1900–1904 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Sandaltzopoulos, R., Blank, T. & Becker, P. B. Transcriptional repression by nucleosomes but not H1 in reconstituted preblastoderm Drosophila chromatin. EMBO J. 13, 373–379 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cramer, P. et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288, 640–649 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Cho, H. et al. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 18, 5355–5363 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parvin, J. D. & Young, R. A. Regulatory targets in the RNA polymerase II holoenzyme. Curr. Opin. Genet. Dev. 8, 565–570 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Thompson, N. E., Aronson, D. B. & Burgess, R. R. Purification of eukaryotic RNA polymerase II by immunoaffinity chromatography: Elution of active enzyme with protein stabilizing agents from a polyol-responsive monoclonal antibody. J. Biol. Chem. 265, 7069–7077 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Neish, A. S., Anderson, S. F., Schlegel, B. P., Wei, W. & Parvin, J. D. Factors associated with the mammalian RNA polymerase II holoenzyme. Nucleic Acids Res. 26, 847–853 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chao, D. M. et al. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature 380, 82–85 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Workman, J. L., Taylor, I. C., Kingston, R. E. & Roeder, R. G. Control of class II gene transcription during in vitro nucleosome assembly. Methods Cell Biol. 35, 419–447 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Cho, H., Maldonado, E. & Reinberg, D. Affinity purification of a human RNA polymerase II complex using monoclonal antibodies against transcription factor IIF. J. Biol. Chem. 272, 11495–11502 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Scully, R. et al. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc. Natl Acad. Sci. USA 94, 5605–5610 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishida, R. et al. DNA topoisomerase II is the molecular target of bisdioxopiperazine derivatives ICRF-159 and ICRF-193 in Saccharomyces cerevisiae. Cancer Res. 55, 2299–2303 (1995).

    CAS  PubMed  Google Scholar 

  16. Liu, L. F. DNA topoisomerase poisons as antitumor drugs. Annu. Rev. Biochem. 58, 351–375 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Wang, J. C. & Lynch, A. S. Transcription and DNA supercoiling. Curr. Opin. Genet. Dev. 3, 764–768 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Gartenberg, M. R. & Wang, J. C. Positive supercoiling of DNA greatly diminishes mRNA synthesis in yeast. Proc. Natl Acad. Sci. USA 89, 11461–11465 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schultz, M. C., Brill, S. J., Ju, Q., Sternglanz, R. & Reeder, R. H. Topoisomerases and yeast rRNA transcription: Negative supercoiling stimulates initiation and topoisomerase activity is required for elongation. Genes Dev. 6, 1332–1341 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Brill, S. J., DiNardo, S., Voelkel-Meiman, K. & Sternglanz, R. Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature 326, 414–416 (1987); erratum Nature 326, 812 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Chasman, D. I., Leatherwood, J., Carey, M., Ptashne, M. & Kornberg, R. D. Activation of yeast polymerase II transcription by herpesvirus VP16 and GAL4 derivatives in vitro. Mol. Cell. Biol. 9, 4746–4749 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Manley, J. L., Fire, A., Samuels, M. & Sharp, P. A. In vitro transcription: Whole-cell extract. Methods Enzymol. 101, 568–582 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Haile, D. T. & Parvin, J. D. Activation of transcription in vitro by the BRCA1 carboxyl-terminal domain. J. Biol. Chem. 274, 2113–2117 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Chiang, C. M. & Roeder, R. G. Expression and purification of general transcription factors by FLAG epitope-tagging and peptide elution. Pept. Res. 6, 62–64 (1993).

    CAS  PubMed  Google Scholar 

  25. Schlegel, B. P., Green, V. J., Ladias, J. A. & Parvin, J. D. BRCA1 interaction with RNA polymerase II reveals a role for hRPB2 and hRPB10α in activated transcription. Proc. Natl Acad. Sci. USA 97, 3148–3153 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Dutta, J. Wohlschlagel, Z. Jonsson and S. K. Dhar for encouragement and advice throughout the course of this study; U. Banerjee, M. Kannapiran and W. Wei for preparation of extracts; and J. C. Wang for the gift of ICRF-193. This work was supported by a grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Parvin.

Supplementary information

Figure S1

(JPG 19.9 KB)

Micrococcal nuclease digestion of chromatin templates. Naked DNA templates and different chromatin preparations were tested for sensitivity to digestion by micrococcal nuclease. Naked DNA (panel a) was completely digested by nuclease after 2 minutes in the presence of the enzyme, whereas chromatin templates without added topoisomerase (panel b) or with topoisomerase IIa (panel c) were resistant to extended treatment (15 min) with the nuclease. In each set of reactions, the template was incubated with micrococcal nuclease at 37℃ for 0 min (lanes 1, 5), 2 min (lanes 2, 6), 5 min (lanes 3, 7) or 15 min (lanes 4, 8).

Figure S2

(JPG 7.23 KB)

Assessment of the purity of topoisomerase preparation. DNA topoisomerase IIa was subjected to SDS-PAGE and stained with silver. The topoisomerase IIa preparation contains a single polypeptide migrating at 170 kd, consistent with its known molecular mass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, N., Parvin, J. DNA topoisomerase IIα is required for RNA polymerase II transcription on chromatin templates. Nature 413, 435–438 (2001). https://doi.org/10.1038/35096590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35096590

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing