Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Bragg glass phase in the vortex lattice of a type II superconductor

Abstract

Although crystals are usually quite stable, they are sensitive to a disordered environment: even an infinitesimal amount of impurities can lead to the destruction of crystalline order1. The resulting state of matter has been a long-standing puzzle. Until recently it was believed to be an amorphous state in which the crystal would break into ‘crystallites’2. But a different theory3 predicts the existence of a novel phase of matter: the so-called Bragg glass, which is a glass and yet nearly as ordered as a perfect crystal. The ‘lattice’ of vortices that contain magnetic flux in type II superconductors provide a good system to investigate these ideas4. Here we show that neutron-diffraction data of the vortex lattice provides unambiguous evidence for a weak, power-law decay of the crystalline order characteristic of a Bragg glass. The theory also predicts accurately the electrical transport properties of superconductors; it naturally explains the observed phase transitions4,5,6 and the dramatic jumps in the critical current7,8 associated with the melting of the Bragg glass. Moreover, the model explains experiments as diverse as X-ray scattering in disordered liquid crystals9,10 and the conductivity of electronic crystals11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Angular dependence of the diffracted neutron intensity (the rocking curve) in a (K,Ba)BiO3 single crystal, and the sample geometry.
Figure 2: Bragg-glass predictions for the angular dependence of the diffracted neutron intensity.
Figure 3: Magnetic-field dependence of the positional length Raz for (K,Ba)BiO3 and BiSrCaCuO (ref.24) crystals.
Figure 4: Temperature dependence of the maximum of the diffracted neutron intensity in a (K,Ba)BiO3 crystal.

Similar content being viewed by others

References

  1. Larkin, A. I. Effect of inhomogeneities on the structure of the mixed state of superconductors. Sov. Phys. JETP 31, 784–786 (1970).

    ADS  Google Scholar 

  2. Fisher, D. S., Fisher, M. P. A. & Huse, D. A. Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Phys. Rev. B 43, 130–159 (1990).

    Article  ADS  Google Scholar 

  3. Giamarchi, T. & Le Doussal, P. Elastic theory of flux lattices in the presence of weak disorder. Phys. Rev. B 52, 1242–1270 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Zeldov, E. et al. Thermodynamic observation of first order vortex lattice melting transition. Nature 375, 373–376 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Deligiannis, K. et al. New features in the vortex phase diagram of YBa2Cu3O7-δ. Phys. Rev. Lett. 79, 2121–2124 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Joumard, I. et al. Small angle neutron scattering and magnetization measurements in the cubic (K,Ba)BiO3 superconductor. Phys. Rev. Lett. 82, 4930–4933 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Paltiel, Y. et al. Instabilities and disorder-driven first-order transition of the vortex lattice. Phys. Rev. Lett. 85, 3712–3715 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Marchevsky, M., Higgins, M. J. & Bhattarcharya, S. Two coexisting vortex phases in the peak effect regime in a superconductor. Nature 409, 591–594 (2001).

    Article  ADS  CAS  Google Scholar 

  9. Crawford, G. P. & Zumer, S. (eds) Liquid Crystals in Complex Geometries (Taylor & Francis, London, 1996).

    Google Scholar 

  10. Saunders, K., Radzihovsky, L. & Toner, J. A discotic disguised as a smectic: a hybrid columnar Bragg glass. Phys. Rev. Lett. 85, 4309–4312 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Perruchot, F. et al. Hall effect of pinned and depinned 2-D electron and hole solids. Physica B 256, 587–590 (1998).

    Article  ADS  Google Scholar 

  12. Li, C. C. et al. Microwave resonance and weak pinning in two-dimensional hole systems at high magnetic fields. Phys. Rev. B 61, 10905–10909 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Carpentier, D., Le Doussal, P. & Giamarchi, T. Stability of the Bragg glass phase in a layered geometry. Europhys. Lett. 35, 379–384 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Kierfeld, J., Nattermann, T. & Hwa, T. Topological order in the vortex glass phase of high temperature superconductor. Phys. Rev. B 55, 626–629 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Fisher, D. S. Stability of elastic glass phases in random field XY magnets and vortex lattices in type II superconductors. Phys. Rev. Lett. 78, 1964–1967 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Gingras, M. J. P. & Huse, D. A. Topological defects in the random field XY model and the pinned vortex lattice to vortex glass transition in type II superconductors. Phys. Rev. B 53, 15193–15200 (1996).

    Article  ADS  CAS  Google Scholar 

  17. van Otterlo, A., Scalettar, R. T. & Zimanyi, G. T. Phase diagram of disordered vortices from London Langevin simulations. Phys. Rev. Lett. 81, 1497–1500 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Ertas, D. & Nelson, D. R. Irreversibility, mechanical entanglement and thermal melting in superconducting vortex crystals with point impurities. Physica C 272, 79–86 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Giamarchi, T. & Le Doussal, P. Phase diagrams of flux lattices with disorder. Phys. Rev. B 55, 6577–6583 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Fuchs, D. T. et al. Transport properties of Bi2Sr2CaCu2O8 crystals with and without surface barriers. Phys. Rev. Lett. 81, 3944–3974 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Nattermann, T. Scaling approach to pinning: Charge density waves and giant flux creep in superconductors. Phys. Rev. Lett. 64, 2454–2457 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Kim, P. et al. Structure of flux line lattices with weak disorder at large length scales. Phys. Rev. B 60, R12589–R12592 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Pardo, F. et al. Observation of smectic and moving-Bragg-glass phases in flowing vortex lattices. Nature 396, 348–350 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Troyanovski, A. M., Aarts, J. & Kes, P. H. Collective and plastic vortex motion in superconductors at high flux densities. Nature 399, 665–668 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Cubitt, R. et al. Direct observation of magnetic flux lattice melting and decomposition in the high Tc superconductor BiSrCaCuO. Nature 365, 407–411 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Forgan, E. M. et al. Observation by neutron diffraction of the magnetic flux lattice in single-crystal YbaCuO. Nature 343, 735–736 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Yaron, U. et al. Structural evidence for a two step process in the depinning of the superconducting flux line lattice. Nature 376, 753–755 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Gammel, P. L. et al. Structure and correlations of the flux line lattice in crystalline Nb through the peak effect. Phys. Rev. Lett. 80, 833–836 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Brandt, E. H. Precision Ginzburg-Landau solution of ideal vortex lattices for any induction and symmetry. Phys. Rev. Lett. 78, 2208–2211 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Christen, D. K., Tasset, F., Spooner, S. & Mook, H. A. Study of the intermediate mixed state of niobium by small angle neutron scattering. Phys. Rev. 15, 4506–4509 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Simon for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, T., Joumard, I., Blanchard, S. et al. A Bragg glass phase in the vortex lattice of a type II superconductor. Nature 413, 404–406 (2001). https://doi.org/10.1038/35096534

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35096534

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing