Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The melanosome: membrane dynamics in black and white

Abstract

Melanosomes are morphologically and functionally unique organelles within which melanin pigments are synthesized and stored. Melanosomes share some characteristics with lysosomes, but can be distinguished from them in many ways. The biogenesis and intracellular movement of melanosomes and related organelles are disrupted in several genetic disorders in mice and humans. The recent characterization of genes defective in these diseases has reinvigorated interest in the melanosome as a model system for understanding the molecular mechanisms that underlie intracellular membrane dynamics.

Key Points

  • Melanosomes are specialized organelles within melanocytes and retinal pigment epithelial cells, where melanins, the major pigments made by mammals, are synthesized and stored. Melanosomes are one of several "lysosome-related" organelles singularly expressed in various tissues; these diverse organelles display unique morphological and functional characteristics but also share features with conventional lysosomes.

  • Lysosome-related organelles, including melanosomes, are functionally disrupted in a group of genetic disorders in humans and mice, including Hermansky-Pudlak, Chediak-Higashi, and Griscelli syndromes. These disorders are due to defects in protein transport, morphogenesis, or intracellular movement of lysosome-related organelles. Melanosomes serve as the best current model system in which to define the molecular basis of the disease-associated defects.

  • Among the gene products deficient in Hermansky-Pudlak syndrome and related disorders are several involved in vesicular transport — including the adaptor complex AP-3, the SNARE-associated protein palladin, and the α-subunit of rab geranylgeranyltransferase. Testable models for how these and other less-characterized disease-associated proteins function in melanosome biogenesis are being developed and are based on recent advances in our understanding of the endosomal origins of melanosome precursors, the role of multivesicular bodies, and the segregation of melanosomes from lysosomes. Morphological and biochemical analyses of melanosome resident proteins in melanocytes from affected mice and individuals are beginning to refine these models.

  • Griscelli's syndrome and related disorders in humans and mice result from defects in the intracellular movement and distribution of melanosomes and other lysosome-related organelles. Associated gene products regulate capture of melanosomes in the periphery of melanocytes, which are required for subsequent transfer of melanin to keratinocytes. Study of these gene products and the effects of their loss have provided new paradigms for the roles of a rab protein (Rab27a), a rab effector protein (melanophilin), and an unconventional myosin (myosin Va) in mediating actin-dependent organelle movement.

  • Further study of melanosome biology in normal and diseased cells is likely to provide us with new paradigms to explain how conserved mechanisms are manipulated to effect the generation of structurally and functionally unique organelles and how intracellular organelle movement and positioning is regulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Melanosome maturation.
Figure 2: Post-Golgi sorting in conventional cell types and melanocytes.
Figure 3: Model of protein/lipid transport between organelles.
Figure 4: Model of melanosome transport in epidermal melanocytes.
Figure 5: Molecular mechanisms of melanosome transport.

Similar content being viewed by others

References

  1. Dell'Angelica, E. C., Mullins, C., Caplan, S. & Bonifacino, J. S. Lysosome-related organelles. FASEB J. 14, 1265–1278 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Stinchcombe, J. C. & Griffiths, G. M. Regulated secretion from hemopoietic cells. J. Cell Biol. 147, 1–5 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Seiji, M., Fitzpatrick, T. M., Simpson, R. T. & Birbeck, M. S. C. Chemical composition and terminology of specialized organelles (melanosomes and melanin granules) in mammalian melanocytes. Nature 197, 1082–1084 (1963).

    Article  CAS  PubMed  Google Scholar 

  4. Hearing, V. J. Biochemical control of melanogenesis and melanosomal organization. J. Invest. Dermatol. Symp. Proc. 4, 24–28 (1999).

    Article  CAS  Google Scholar 

  5. Schraermeyer, U. & Heimann, K. Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res. 12, 219–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Oetting, W. S. & King, R. A. Molecular basis of albinism: mutations and polymorphisms of pigmentation genes associated with albinism. Human Mutation 13, 99–115 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Bennett, D. C., Cooper, P. J. & Hart, I. R. A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int. J. Cancer 39, 414–418 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Kantheti, P. et al. Mutation in AP-3δ in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Neuron 21, 111–122 (1998).References 8, 9 and 10 describe the defect in AP-3 found in mouse and human models of HPS, and are the key references inferring that transporting defects underlie HPS in general.

    Article  CAS  PubMed  Google Scholar 

  9. Feng, L. et al. The β3A subunit gene (Ap3b1) of the AP-3 adaptor complex is altered in the mouse hypopigmentation mutant pearl, a model for Hermansky-Pudlak syndrome and night blindness. Hum. Mol. Genet. 8, 323–330 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Dell'Angelica, E. C., Shotelersuk, V., Aguilar, R. C., Gahl, W. A. & Bonifacino, J. S. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the β3A subunit of the AP-3 adaptor. Mol. Cell 3, 11–21 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Huang, L., Kuo, Y. M. & Gitschier, J. The pallid gene encodes a novel, syntaxin 13-interacting protein involved in platelet storage pool deficiency. Nature Genet. 23, 329–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Wilson, S. M. et al. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc. Natl Acad. Sci. USA 97, 7933–7938 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ménasché, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genet. 25, 173–176 (2000).The first demonstration that Griscelli syndrome is heterogeneous, and that the classic syndrome is caused by mutations in Rab27a.

    Article  PubMed  Google Scholar 

  14. Detter, J. C. et al. Rab geranylgeranyl transferase α mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis. Proc. Natl Acad. Sci. USA 97, 4144–4149 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maul, G. G. Golgi–melanosome relationship in human melanoma in vitro. J. Ultrasctruct. Res. 26, 163–176 (1969).

    Article  CAS  Google Scholar 

  16. Kobayashi, T. et al. The Pmel 17/silver locus protein. Characterization and investigation of its melanogenic function. J. Biol. Chem. 269, 29198–29205 (1994).

    CAS  PubMed  Google Scholar 

  17. Berson, J. F., Harper, D., Tenza, D., Raposo, G. & Marks, M. S. Pmel17 initiates premelanosomal striation formation within multivesicular bodies. Mol. Biol. Cell (in the press).

  18. Raposo, G., Tenza, D., Murphy, D. M., Berson, J. F. & Marks, M. S. Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J. Cell Biol. 152, 809–823 (2001).Describes the model for melanosome biogenesis discussed in this review and is the first paper to demonstrate a distinction between melanosomes and lysosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Futter, C. E., Pearse, A., Hewlett, L. J. & Hopkins, C. R. Multivesicular endosomes containing internalized EGF–EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 132, 1011–123 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Prekeris, R., Yang, B., Oorschot, V., Klumperman, J. & Scheller, R. H. Differential roles of syntaxin 7 and syntaxin 8 in endosomal trafficking. Mol. Biol. Cell 10, 3891–3908 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dell'Angelica, E. C., Klumperman, J., Stoorvogel, W. & Bonifacino, J. S. Association of the AP-3 adaptor complex with clathrin. Science 280, 431–434 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Le Borgne, R., Alconada, A., Bauer, U. & Hoflack, B. The mammalian AP-3 adaptor-like complex mediates the intracellular transport of lysosomal membrane glycoproteins. J. Biol. Chem. 273, 29451–29461 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, W., Li, C., Ward, D. M., Kaplan, J. & Mansour, S. L. Defective organellar membrane protein trafficking in Ap3b1-deficient cells. J. Cell Sci. 113, 4077–4086 (2000).

    CAS  PubMed  Google Scholar 

  24. Huizing, M. et al. AP-3 mediates tyrosinase but not TRP–1 trafficking in human melanocytes. Mol. Biol. Cell 12, 2075–2085 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heijnen, H. F. et al. Multivesicular bodies are an intermediate stage in the formation of platelet alpha-granules. Blood 91, 2313–2325 (1998).

    CAS  PubMed  Google Scholar 

  26. Youssefian, T. & Cramer, E. M. Megakaryocyte dense granule components are sorted in multivesicular bodies. Blood 95, 4004–4007 (2000).

    CAS  PubMed  Google Scholar 

  27. Kobayashi, T. et al. The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells. Mol. Biol. Cell 11, 1829–1843 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arribas, M. & Cutler, D. F. Weibel–Palade body membrane proteins exhibit differential trafficking after exocytosis in endothelial cells. Traffic 1, 783–793 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Babst, M., Odorizzi, G., Estepa, E. J. & Emr, S. D. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1, 248–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Odorizzi, G., Babst, M. & Emr, S. D. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95, 847–858 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Bishop, N. & Woodman, P. TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. J. Biol. Chem. 276, 11735–11742 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Yoshimori, T. et al. The mouse SKD1, a homologue of yeast Vps4p, is required for normal endosomal trafficking and morphology in mammalian cells. Mol. Biol. Cell 11, 747–763 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Faigle, W. et al. Deficient peptide loading and MHC class II endosomal sorting in a human genetic immunodeficiency disease: the Chediak-Higashi syndrome. J. Cell Biol. 141, 1121–1134 (1998).This paper describes the late endosomal/ lysosomal protein sorting defects observed in Chediak Higashi syndrome, using B lymphocytes as a model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, H. et al. On the analysis of the pathophysiology of Chediak-Higashi syndrome. Defects expressed by cultured melanocytes. Lab Invest. 71, 25–34 (1994).

    CAS  PubMed  Google Scholar 

  35. Novikoff, A. B., Albala, A. & Biempica, L. Ultrastructural and cytochemical observations on B-16 and Harding-Passey mouse melanomas. The origin of premelanosomes and compound melanosomes. J. Histochem. Cytochem. 16, 299–319 (1968).

    Article  CAS  PubMed  Google Scholar 

  36. Maul, G. G. & Brumbaugh, J. A. On the possible function of coated vesicles in melanogenesis of the regenerating fowl feather. J. Cell Biol. 48, 41–48 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vijayasaradhi, S., Xu, Y. Q., Bouchard, B. & Houghton, A. N. Intracellular sorting and targeting of melanosomal membrane proteins: identification of signals for sorting of the human brown locus protein, gp75. J. Cell Biol. 130, 807–820 (1995).The first paper to show that targeting signals for integral membrane transport to melanosomes and to lysosomes are similar.

    Article  CAS  PubMed  Google Scholar 

  38. Calvo, P. A., Frank, D. W., Bieler, B. M., Berson, J. F. & Marks, M. S. A cytoplasmic sequence in human tyrosinase defines a second class of di-leucine-based sorting signals for late endosomal and lysosomal delivery. J. Biol. Chem. 274, 12780–12789 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Simmen, T., Schmidt, A., Hunziker, W. & Beermann, F. The tyrosinase tail mediates sorting to the lysosomal compartment in MDCK cells via a di-leucine and a tyrosine-based signal. J. Cell Sci. 112, 45–53 (1999).

    CAS  PubMed  Google Scholar 

  40. Blagoveshchenskaya, A. D., Hewitt, E. W. & Cutler, D. F. Di-leucine signals mediate targeting of tyrosinase and synaptotagmin to synaptic-like microvesicles within PC12 cells. Mol. Biol. Cell 10, 3979–3990 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kirchhausen, T. Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol. 15, 705–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Höning, S., Sandoval, I. V. & von Figura, K. A di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J. 17, 1304–1314 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu, T. F., Kandala, G. & Setaluri, V. PDZ-domain protein GIPC interacts with the cytoplasmic tail of melanosomal membrane protein gp75 (tyrosinase related protein–1). J. Biol. Chem. http://www.jbc.org/cgi/reprint/M103585200v1 (2001).

  44. Anikster, Y. et al. Mutation of a new gene causes a unique form of Hermansky–Pudlak syndrome in a genetic isolate of central Puerto Rico. Nature Genet. 28, 376–380 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Puri, N., Gardner, J. M. & Brilliant, M. H. Aberrant pH of melanosomes in Pink-Eyed Dilution (p) mutant melanocytes. J. Invest. Dermatol. 115, 607–613 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Orlow, S. J. & Brilliant, M. H. The pink-eyed dilution locus controls the biogenesis of melanosomes and levels of melanosomal proteins in the eye. Exp. Eye Res. 68, 147–154 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Manga, P., Boissy, R. E., Pifko-Hirst, S., Zhou, B. K. & Orlow, S. J. Mislocalization of melanosomal proteins in melanocytes from mice with oculocutaneous albinism type 2. Exp. Eye Res. 72, 695–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Fukamachi, S., Shimada, A. & Shima, A. Mutations in the gene encoding B, a novel transporter protein, reduce melanin content in medaka. Nature Genet. 28, 381–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Brilliant, M. H. The mouse p (pink-eyed dilution) and human P genes, oculocutaneous albinism type 2 (OCA2), and melanosomal pH. Pigment Cell Res. 14, 86–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Ungermann, C., Wickner, W. & Xu, Z. Vacuole acidification is required for trans-SNARE pairing, LMA1 release, and homotypic fusion. Proc. Natl Acad. Sci. USA 96, 11194–11199 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Orlow, S. J. Melanosomes are specialized members of the lysosomal lineage of organelles. J. Invest. Dermatol. 105, 3–7 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Klumperman, J., Kuliawat, R., Griffith, J. M., Geuze, H. J. & Arvan, P. Mannose 6-phosphate receptors are sorted from immature secretory granules via adaptor protein AP-1, clathrin, and syntaxin 6-positive vesicles. J. Cell Biol. 141, 359–371 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pryor, P. R., Mullock, B. M., Bright, N. A., Gray, S. R. & Luzio, J. P. The role of intraorganellar Ca(2+) in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J. Cell Biol. 149, 1053–1062 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Luzio, J. P. et al. Lysosome–endosome fusion and lysosome biogenesis. J. Cell Sci. 113, 1515–1524 (2000).

    CAS  PubMed  Google Scholar 

  55. Gardner, J. M. et al. The mouse pale ear (ep) mutation is the homologue of human Hermansky–Pudlak syndrome. Proc. Natl Acad. Sci. USA 94, 9238–9243 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Horikawa, T. et al. Heterozygous HPS1 mutations in a case of Hermansky–Pudlak syndrome with giant melanosomes. Br. J. Dermatol. 143, 635–640 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Introne, W., Boissy, R. E. & Gahl, W. A. Clinical, molecular, and cell biological aspects of Chediak-Higashi Syndrome. Mol. Genet. Metabolism 68, 283–303 (1999).

    Article  CAS  Google Scholar 

  58. Incerti, B. et al. Oa1 knock-out: new insights on the pathogenesis of ocular albinism type 1. Hum. Mol. Genet. 9, 2781–2788 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Shen, B., Rosenberg, B. & Orlow, S. J. Intracellular distribution and late endosomal effects of the ocular albinism type 1 gene product: consequences of disease-causing mutations and implications for melanosome biogenesis. Traffic 2, 202–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Stinchcombe, J. C., Page, L. J. & Griffiths, G. M. Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak Higashi Syndrome patients. Traffic 1, 435–444 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Perou, C. M. et al. The Beige/Chediak-Higashi syndrome gene encodes a widely expressed cytosolic protein. J. Biol. Chem 272, 29790–29794 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Oh, J., Liu, Z. X., Feng, G. H., Raposo, G. & Spritz, R. A. The Hermansky–Pudlak syndrome (HPS) protein is part of a high molecular weight complex involved in biogenesis of early melanosomes. Hum. Mol. Genet. 9, 375–385 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Schiaffino, M. V. et al. Ocular albinism: evidence for a defect in an intracellular signal transduction system. Nature Genet. 23, 108–112 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Langford, G. M. Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr. Opin. Cell Biol. 7, 82–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Goodson, H. V., Valetti, C. & Kreis, T. E. Motors and membrane traffic. Curr. Opin. Cell Biol. 9, 18–28 (1999).

    Article  Google Scholar 

  66. Rogers, S. L. & Gelfand, V. I. Membrane trafficking, organelle transport, and the cytoskeleton. Curr. Opin. Cell Biol. 12, 57–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Berg, J. S., Powell, B. C. & Cheney, R. E. A millennial myosin census. Mol. Biol. Cell 12, 780–794 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cramer, L. P. Myosin VI: Roles for a minus-end directed actin motor in cells. J. Cell Biol. 150, F121–F126 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Wu, X., Bowers, B., Rao, K., Wei, Q. & Hammer, J. A., Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function in vivo. J. Cell Biol. 143, 1899–1918 (1998).This paper was the first tp propose the current model for melanosome transport in melanocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Provance, D. W. Jr. Wei, M., Ipe, V. & Mercer, J. A. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc. Natl Acad. Sci. USA 93, 14554–14558 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wei, Q., Wu, X. & Hammer, J. A. The predominant defect in dilute melanocytes is in melanosome distribution and not cell shape, supporting a role for myosin V in melanosome transport. J. Muscle Res. Cell Motil. 18, 517–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Tuma, C. M. & Gelfand, V. I. Molecular mechanisms of pigment transport in melanophores. Pigment Cell Res. 12, 283–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Borisy, G. G. & Rodionov, V. I. Lessons from the melanophore. FASEB J. 13, S221–S224 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Hara, M. et al. Kinesin participates in melanosomal movement along melanocyte dendrites. J. Invest. Dermatol. 114, 438–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Byers, R. H., Yaar, M., Eller, M. S., Jalbert, N. L. & Gilchrest, B. A. Role of cytoplasmic dynein in melanosome transport in human melanocytes. J. Invest. Dermatol. 114, 990–997 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Vancoillie, G. et al. Colocalization of dynactin subunits p150Glued and p50 with melanosomes in normal human melanocytes. Pigment Cell Res. 13, 449–457 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Moore, K. J. et al. The murine dilute suppressor gene dsu suppresses the coat-colour phenotype of three pigment mutations that alter melanocyte morphology, d, ash and ln. Genetics 119, 933–941 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mercer, J. A., Seperack, P. K., Strobel, M. C., Copeland, N. G. & Jenkins, N. A. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349, 709–713 (1991).Describes the first cloning of a pigment dilution gene (myosin Va) causing defects in melanosome transport.

    Article  CAS  PubMed  Google Scholar 

  80. Walker, M. L. et al. Two-headed binding of a processive myosin to F-actin. Nature 405, 804–807 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Rief, M. et al. Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl Acad. Sci. USA 97, 9482–9486 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Reck-Peterson, S. L., Provance, D. W. Jr. Mooseker, M. S. & Mercer, J. A. Class V myosins. Biochim. Biophys. Acta 1496, 36–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Seperack, P. K., Mercer, J. A., Strobel, M. C., Copeland, N. G. & Jenkins, N. A. Retroviral sequences located within an intron of the dilute gene alter dilute expression in a tissue-specific manner. EMBO J. 14, 2326–2332 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tsakraklides, V. et al. Subcellular localization of GFP-myosin-V in live mouse melanocytes. J. Cell Sci. 112, 2863–2865 (1999).

    Google Scholar 

  85. Pastural, E. et al. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the Myosin-Va gene. Nature Genet. 16, 289–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Pastural, E. et al. Two genes are responsible for Griscelli syndrome at the same 15q21 locus. Genomics 63, 299–306 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Huang, J. -D. et al. Direct interaction of microtubule- and actin-based transport motors. Nature 397, 267–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Hume, A. N. et al. Rab27a regulates the peripheral distribution of melanosomes in melanocytes. J. Cell Biol. 152, 795–808 (2001).Together with references 89 and 101 , this paper provides mechanistic insights into the role of Rab27a and myosin Va in melanosome transport.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu, X. et al. Rab27a enables myosin Va-dependent melanosome capture by recruiting the myosin to the organelle. J. Cell Sci. 114, 1091–1100 (2001).

    CAS  PubMed  Google Scholar 

  90. Pereira-Leal, J. B. & Seabra, M. C. The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J. Mol. Biol. 301, 1077–1087 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–119 (2001).

    Article  CAS  Google Scholar 

  92. Segev, N. Ypt and Rab GTPases: insight into functions through novel interactions. Curr. Opin. Cell Biol. 13, 500–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. McBride, H. M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cao, X., Ballew, N. & Barlowe, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J. 17, 2156–2165 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Eitzen, G., Will, E., Gallwitz, D., Haas, A. & Wickner, W. Sequential action of two GTPases to promote vacuole docking and fusion. EMBO J. 19, 6713–6720 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Allan, B. B., Moyer, B. D. & Balch, W. E. Rab1 recruitment of p115 into a cis–SNARE complex: programming budding COPII vesicles for fusion. Science 289, 444–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Carroll, K. S. et al. Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science 292, 1373–1376 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Nielsen, E., Severin, F., Backer, J. M., Hyman, A. A. & Zerial, M. Rab5 regulates motility of early endosomes on microtubules. Nature Cell Biol. 1, 376–382 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Bahadoran, P. et al. Rab27a: A key to melanosome transport in human melanocytes. J. Cell Biol. 152, 843–850 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stinchcombe, J. C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol. 152, 825–834 (2001).Together with reference 103 , this paper shows the requirement for Rab27a in lysosome-like organelle secretion, using cytotoxic T cells as a model system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Haddad, E. K., Wu, X., Hammer, J. A. R. & Henkart, P. A. Defective granule exocytosis in Rab27a-deficient lymphocytes from Ashen mice. J. Cell Biol. 152, 835–842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Scott, G. & Zhao, Q. Rab3a and SNARE proteins: potential regulators of melanosome movement. J. Invest. Dermatol. 116, 296–304 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Araki, K. et al. Small Gtpase rab3A is associated with melanosomes in melanoma cells. Pigment Cell Res. 13, 332–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Jager, D. et al. Serological cloning of a melanocyte rab guanosine 5′-triphosphate-binding protein and a chromosome condensation protein from a melanoma complementary DNA library. Cancer Res. 60, 3584–3591 (2000).

    CAS  PubMed  Google Scholar 

  107. Seabra, M. C. Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal 10, 167–172 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Walch-Solimena, C., Collins, R. N. & Novick, P. J. Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J. Cell Biol. 137, 1495–1509 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schott, D., Ho, J., Pruyne, D. & Bretscher, A. The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J. Cell Biol. 147, 791–807 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Matesic, L. E. et al. Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc. Natl Acad. Sci. USA 98, 10238–10243 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pereira-Leal, J. B. & Seabra, M. C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. (in the press).

  112. Okazaki, K., Uzuka, M., Morikawa, F., Toda, K. & Seiji, M. Transfer mechanism of melanosomes in epidermal cell culture. J. Invest. Dermatol. 67, 541–547 (1976).

    Article  CAS  PubMed  Google Scholar 

  113. Yamamoto, O. & Bhawan, J. Three modes of melanosome transfers in Caucasian facial skin: hypothesis based on an ultrastructural study. Pigment Cell Res. 7, 158–169 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Kobayashi, T., Imokawa, G., Bennett, D. C. & Hearing, V. J. Tyrosinase stabilization by Tyrp1 (the brown locus protein). J. Biol. Chem. 273, 31801–31805 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Halaban, R., Cheng, E., Svedine, S., Aron, R. & Hebert, D. N. Proper folding and endoplasmic reticulum to golgi transport of tyrosinase are induced by its substrates, DOPA and tyrosine. J. Biol. Chem. 276, 11933–11938 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Swank, R. T., Novak, E. K., McGarry, M. P., Rusiniak, M. E. & Feng, L. Mouse models of Hermansky–Pudlak syndrome: a review. Pigment Cell Res. 11, 60–80 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Huizing, M., Anikster, Y. & Gahl, W. A. Hermansky–Pudlak syndrome and related disorders of organelle formation. Traffic 1, 823–835 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Liu, X., Ondek, B. & Williams, D. S. Mutant myosin VIIa causes defective melanosome distribution in the RPE of shaker–1 mice. Nature Genet. 19, 117–118 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank D.C. Bennett, J.S. Bonifacino, C.G. Burd, D.F. Cutler, E.C. Dell'Angelica, L.B. King, and members of the Marks and Seabra labs for their contributions and critical comments on the manuscript. We are grateful to Graça Raposo for critical contributions to many of the models described here. Particular thanks go to L. Collinson and C. Hopkin for the electron micrograph in figure 1. We gratefully acknowledge support by grant R01 EY 12207 from the National Eye Institute of the National Institutes of Health to M.S.M and grants from the Wellcome Trust, the Medical Research Council, and Foundation Fighting Blindness to M.C.S.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Locuslink:

AIM-1

AP-3

ashen

dsu

gunmetal

HPS1

HPS3

myosin Va

myosin VI

myosin VIIa

OA1

pallidin

Pmel17

Rab3a

Rab27a

Rab38

Rab geranylgeranyl transferase

 OMIM:

Chediak Higashi syndrome

Griscelli syndrome

Hermansky–Pudlak syndrome

OCA2

Usher syndrome type 1B

 SGD:

Sec2

Sec4

 Swiss-Prot:

CHS1

TRP1

Glossary

LYSOSOMAL HYDROLASES

Soluble enzymes found in lysosomes that are involved in the hydrolytic breakdown of macromolecules. They include proteases, lipases and glycosidases.

RETINAL PIGMENT EPITHELIAL CELLS

These pigmented cells form an epithelial layer underneath photoreceptors and function in the degradation of photoreceptor outer segments.

CHOROIDAL MELANOCYTES

Pigmented melanocytes within the choroid of the eye, adjacent to the pigment epithelia. These cells probably function as an additional barrier to prevent light scattering inside the eye.

VACUOLAR SYSTEM

The series of interconnected membrane-enclosed organelles of the secretory and endocytic pathways.

COATS

Coat proteins, such as clathrin, COPI and COPII, are thought to link cargo recruitment to vesicle formation within the vacuolar system.

SNARES

SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins are a family of membrane-tethered coiled–coil proteins that regulate fusion reactions and target specificity in the vacuolar system.

RABS

Rab proteins form the largest subfamily of small GTPases of the Ras superfamily. They regulate budding, tethering, fusion and motility at various sites within cells.

MULTIVESICULAR BODIES

Endosomal intermediates in which small membrane vesicles are enclosed within a limiting membrane. The internal vesicles are thought to form by invagination and budding from the limiting membrane.

CLATHRIN

One type of coat protein that, when polymerized, forms a characteristic electron-dense structure on its target membrane. Clathrin binds to membranes through adaptor complexes, such as AP-1 and AP-2.

AP-3

A heterotetrameric adaptor complex similar in structure to the clathrin-associated adaptors AP-1 and AP-2. It is not yet clear whether AP-3 physiologically interacts with clathrin.

DENSE GRANULES AND α GRANULES

Two types of secretory granules within platelets and megakaryocytes, the release of which is required for proper blood clotting. α granules contain fibrinogen, von Willebrand factor and other clotting factors. Dense granules contain serotonin, calcium, pyrophosphate and nucleotides. Dense granules are compromised or absent in platelets of patients and mouse models with Hermansky–Pudlak syndrome.

WEIBEL–PALADE BODIES

Morphologically unique secretory structures of endothelial cells, within which von Willebrand factor is stored for eventual release.

PDZ DOMAIN

An approximately 90-residue structural motif found in many cytosolic proteins. PDZ domains regulate protein–protein interactions, largely by binding to a specific tripeptide motif.

MANNOSE 6-PHOSPHATE RECEPTORS

These receptors transport soluble lysosomal hydrolases to late endosomes by cycling between the TGN and late endosomes. They bind in the TGN to mannose 6-phosphate moieties on N-linked glycans of the hydrolases. They release the hydrolases in late endosomes and return to the TGN for another round of transport.

DYNEIN/DYNACTIN

Dynein is a motor protein complex involved in minus-end-directed microtubule transport. Dynactin is a biochemically separable complex that links dynein to target organelles.

IQ MOTIF

A small structural domain that mediates interactions with calmodulin.

LYTIC GRANULES

Lysosome-like secretory organelles of cytotoxic T lymphocytes and natural killer cells. They contain pore-forming proteins, toxins and proteases that facilitate killing of target cells.

IMMUNOLOGICAL SYNAPSE

A tight junction between T lymphocytes and target cells. For cytotoxic T cells, it is a site for secretion of lytic granule contents.

GDP/GTP EXCHANGE FACTOR

All members of the Ras superfamily of GTPases cycle between an active GTP- and an inactive GDP-bound state. Following GTP hydrolysis (usually facilitated by a GTPase-activating protein or GAP), exchange factors (GEFs) facilitate release of the GDP and binding of the more abundant GTP. GEFs are therefore required for activation of Rab proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marks, M., Seabra, M. The melanosome: membrane dynamics in black and white. Nat Rev Mol Cell Biol 2, 738–748 (2001). https://doi.org/10.1038/35096009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35096009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing