Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Addiction and the brain: The neurobiology of compulsion and its persistence

Key Points

  • Many drugs of abuse produce tolerance, sensitization, dependence and addiction. Of these effects, addiction (compulsive drug use despite adverse consequences) has been the hardest to study. It is proposed that compulsion and its persistence arise from a pathological usurpation of the molecular mechanisms that are normally involved in memory.

  • Tolerance, sensitization and dependence (leading to withdrawal symptoms when drug use is discontinued) do not, by themselves, explain addiction or late relapses to drug use long after withdrawal has ended. Relapses can be triggered by cues that were previously associated with drug use.

  • The rewarding properties of drugs of abuse seem to be mediated by the midbrain dopaminergic system, which also mediates the rewarding effects of positive natural stimuli such as food. Midbrain dopamine neurons receive highly processed information from the cortex and other regions, and project to the nucleus accumbens and dorsal striatum. Here, dopaminergic signals can interact with excitatory transmitters carried by projections from the cortex, hippocampus and amygdala.

  • Drug-induced synaptic plasticity in the nucleus accumbens and dorsal striatum could contribute to addiction. Long-term potentiation and long-term depression can be elicited at excitatory synapses in the nucleus accumbens and dorsal striatum, although their mechanisms differ. Both forms of plasticity can also be induced in midbrain dopaminergic regions.

  • Treatment with cocaine can induce changes in synaptic weight in the midbrain and nucleus accumbens, and can increase spine density in the nucleus accumbens and prefrontal cortex.

  • Drug-induced synaptic plasticity probably results from a complicated cascade of molecular events in many cells and circuits. Proteins that are thought to be involved include ΔFosB, the cyclin-dependent kinase Cdk5, and the cyclic-AMP-response-element-binding protein (CREB), which is involved in the expression of genes that are upregulated in response to drugs of abuse (both transiently and in the long term).

  • Better models of compulsive drug use despite negative consequences are needed to clarify the molecular and cellular events that lead to addiction.

Abstract

People take addictive drugs to elevate mood, but with repeated use these drugs produce serious unwanted effects, which can include tolerance to some drug effects, sensitization to others, and an adapted state — dependence — which sets the stage for withdrawal symptoms when drug use stops. The most serious consequence of repetitive drug taking, however, is addiction: a persistent state in which compulsive drug use escapes control, even when serious negative consequences ensue. Addiction is characterized by a long-lasting risk of relapse, which is often initiated by exposure to drug-related cues. Substantial progress has been made in understanding the molecular and cellular mechanisms of tolerance, dependence and withdrawal, but as yet we understand little of the neural substrates of compulsive drug use and its remarkable persistence. Here we review evidence for the possibility that compulsion and its persistence are based on a pathological usurpation of molecular mechanisms that are normally involved in memory.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Dopamine–glutamate interactions in the striatum.
Figure 2: Signalling to the nucleus stimulated by dopamine and glutamate.

References

  1. Hyman, S. E. A man with alcoholism and HIV infection. J. Am. Med. Assoc. 274, 837–843 (1995).

    CAS  Article  Google Scholar 

  2. Hyman, S. E. Clinical crossroads. A 28 year old man addicted to cocaine. J. Am. Med. Assoc. (in the press).

  3. O'Brien, C. P., Childress, A. R., Ehrman, R. & Robbins, S. J. Conditioning factors in drug abuse: can they explain compulsion? J. Psychopharmacol. 12, 15–22 (1998).A clear summary of the clinical correlates of classical conditioning in addiction.

    CAS  PubMed  Article  Google Scholar 

  4. Wise, R. A. & Bozarth, M. A. A psychomotor stimulant theory of addiction. Psychol. Rev. 94, 469–492 (1987).A seminal and classic conceptualization of addiction.

    CAS  Article  PubMed  Google Scholar 

  5. Wise, R. A. Addiction becomes a brain disease. Neuron 26, 27–33 (2000).

    CAS  PubMed  Article  Google Scholar 

  6. McLellan, A. T., Lewis, D. C., O'Brien, C. P. & Kleber, H. D. Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcome evaluation. J. Am. Med. Assoc. 284, 1689–1695 (2000).

    CAS  Article  Google Scholar 

  7. Hser, Y. I., Hoffman, V., Grella, C. E. & Anglin, M. D. A 33-year follow-up of narcotics addicts. Arch. Gen. Psychiatry 58, 503–508 (2001).

    CAS  PubMed  Article  Google Scholar 

  8. Nestler, E. J. Molecular basis of long-term plasticity underlying addiction. Nature Rev. Neurosci. 2, 119–128 (2001).The most up-to-date review of drug-induced molecular changes in the brain.

    CAS  Article  Google Scholar 

  9. Berke, J. D. & Hyman, S. E. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25, 515–532 (2000).Focuses on mechanisms that can explain the compulsive use of psychostimulants (cocaine and amphetamine) and late relapse. The proposed central role of associative learning mechanisms forms a basis for the current review.

    CAS  Article  PubMed  Google Scholar 

  10. White, N. M. Reward or reinforcement: what's the difference? Neurosci. Biobehav. Rev. 13, 181–186 (1989).

    CAS  PubMed  Article  Google Scholar 

  11. Kendler, K. S., Karkowski, L. M., Neale, M. C. & Prescott, C. A. Illicit psychoactive substance use, heavy use, abuse, and dependence in a US population-based sample of male twins. Arch. Gen. Psychiatry 57, 261–269 (2000).

    CAS  PubMed  Article  Google Scholar 

  12. Tsuang, M. T. et al. Genetic influences on DSM-III-R drug abuse and dependence: a study of 3,372 twin pairs. Am. J. Med. Genet. 67, 473–477 (1996).

    CAS  PubMed  Article  Google Scholar 

  13. Robinson, T. E. & Berridge, K. C. The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95, S91–117 (2000).

    PubMed  Google Scholar 

  14. Di Chiara, G. A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J. Psychopharmacol. 12, 54–67 (1998).

    CAS  PubMed  Article  Google Scholar 

  15. Kalivas, P. W. & Stewart, J. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. Brain Res. Rev. 16, 223–244 (1991).

    CAS  PubMed  Article  Google Scholar 

  16. Anagnostaras, S. G. & Robinson, T. E. Sensitization to the psychomotor stimulant effects of amphetamine: modulation by associative learning. Behav. Neurosci. 110, 1397–1414 (1996).

    CAS  PubMed  Article  Google Scholar 

  17. Badiani, A., Anagnostaras, S. G. & Robinson, T. E. The development of sensitization to the psychomotor stimulant effects of amphetamine is enhanced in a novel environment. Psychopharmacology (Berl.) 117, 443–452 (1995).

    CAS  Article  Google Scholar 

  18. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Press, Washington DC, 1994).

  19. Nestler, E. J. Under siege: the brain on opiates. Neuron 16, 897–900 (1996).

    CAS  PubMed  Article  Google Scholar 

  20. Markou, A. & Koob, G. F. Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology 4, 17–26 (1991).

    CAS  PubMed  Google Scholar 

  21. Weiss, F., Markou, A., Lorang, M. T. & Koob, G. F. Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Res. 593, 314–318 (1992).

    CAS  PubMed  Article  Google Scholar 

  22. Williams, J. T., Christie, M. J. & Manzoni, O. Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev. 81, 299–343 (2001).

    CAS  PubMed  Article  Google Scholar 

  23. Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive–sensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291 (1993).Sets out a model of addiction in which drugs increase the sensitivity of circuits involved in 'wanting' rather than 'liking' drugs.

    CAS  PubMed  Article  Google Scholar 

  24. O'Brien, C. P., Childress, A. R., McLellan, A. T. & Ehrman, R. Classical conditioning in drug-dependent humans. Ann. NY Acad. Sci. 654, 400–415 (1992).

    CAS  PubMed  Article  Google Scholar 

  25. Wikler, A. & Pescor, F. T. Classical conditioning of a morphine abstinence phenomenon, reinforcement of opioid-drinking behavior and “relapse” in morphine-addicted rats. Psychopharmacologia 10, 255–284 (1967).

    CAS  PubMed  Article  Google Scholar 

  26. Kelley, A. E., Smith-Roe, S. L. & Holahan, M. R. Response-reinforcement learning is dependent on N-methyl-d-aspartate receptor activation in the nucleus accumbens core. Proc. Natl Acad. Sci. USA 94, 12174–12179 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Ciccocioppo, R., Sanna, P. P. & Weiss, F. Cocaine-predictive stimulus induces drug-seeking behavior and neural activation in limbic brain regions after multiple months of abstinence: reversal by D1 antagonists. Proc. Natl Acad. Sci. USA 98, 1976–1981 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. Stewart, J., De Wit, H. & Eikelboom, R. Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol. Rev. 91, 251–268 (1984).

    CAS  PubMed  Article  Google Scholar 

  29. Stewart, J. Neurobiology of conditioning to drugs of abuse. Ann. NY Acad. Sci. 654, 335–346 (1992).

    CAS  PubMed  Article  Google Scholar 

  30. Robinson, T. E., Becker, J. B. & Presty, S. K. Long-term facilitation of amphetamine-induced rotational behavior and striatal dopamine release produced by a single exposure to amphetamine: sex differences. Brain Res. 253, 231–241 (1982).

    CAS  PubMed  Article  Google Scholar 

  31. Robinson, T. E. & Becker, J. B. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. 396, 157–198 (1986).

    CAS  PubMed  Article  Google Scholar 

  32. Piazza, P. V. & Le Moal, M. L. Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu. Rev. Pharmacol. Toxicol. 36, 359–378 (1996).An exposition of the role of stress and stress hormones in drug abuse; complementary to the content of this review.

    CAS  PubMed  Article  Google Scholar 

  33. Ehrman, R. N., Robbins, S. J., Childress, A. R. & O'Brien, C. P. Conditioned responses to cocaine-related stimuli in cocaine abuse patients. Psychopharmacology (Berl.) 107, 523–529 (1992).

    CAS  Article  Google Scholar 

  34. Grant, S. et al. Activation of memory circuits during cue-elicited cocaine craving. Proc. Natl Acad. Sci. USA 93, 12040–12045 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Childress, A. R. et al. Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry 156, 11–18 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Kilts, C. D. et al. Neural activity related to drug craving in cocaine addiction. Arch. Gen. Psychiatry 58, 334–341 (2001).

    CAS  PubMed  Article  Google Scholar 

  37. Maas, L. C. et al. Functional magnetic resonance imaging of human brain activation during cue-induced cocaine craving. Am. J. Psychiatry 155, 124–126 (1998).

    CAS  PubMed  Article  Google Scholar 

  38. Everitt, B. J., Morris, K. A., O'Brien, A. & Robbins, T. W. The basolateral amygdala–ventral striatal system and conditioned place preference: further evidence of limbic–striatal interactions underlying reward-related processes. Neuroscience 42, 1–18 (1991).

    CAS  PubMed  Article  Google Scholar 

  39. Tiffany, S. T. A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychol. Rev. 97, 147–168 (1990).

    CAS  PubMed  Article  Google Scholar 

  40. Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274–5278 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Wise, R. A. Addictive drugs and brain stimulation reward. Annu. Rev. Neurosci. 19, 319–340 (1996).

    CAS  PubMed  Article  Google Scholar 

  42. Robbins, T. W. & Everitt, B. J. Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol. 6, 228–236 (1996).

    CAS  PubMed  Article  Google Scholar 

  43. Koob, G. F. & Bloom, F. E. Cellular and molecular mechanisms of drug dependence. Science 242, 715–723 (1988).

    CAS  PubMed  Article  Google Scholar 

  44. Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. White, N. M. Addictive drugs as reinforcers: multiple partial actions on memory systems. Addiction 91, 921–949 (1996).

    CAS  PubMed  Article  Google Scholar 

  46. Breiter, H. C. et al. Acute effects of cocaine on human brain activity and emotion. Neuron 19, 591–611 (1997).The first study convincingly to show activation of brain reward circuitry in humans by cocaine.

    CAS  PubMed  Article  Google Scholar 

  47. Schultz, W., Apicella, P. & Ljungberg, T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13, 900–913 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001).The most recent of a series of papers by Schultz and colleagues, arguing that dopamine serves as a learning signal.

    CAS  PubMed  Article  Google Scholar 

  49. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS  Article  PubMed  Google Scholar 

  50. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    CAS  Article  PubMed  Google Scholar 

  51. Kalivas, P. W. Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug Alcohol Depend. 37, 95–100 (1995).

    CAS  PubMed  Article  Google Scholar 

  52. Hu, X. T. & White, F. J. Dopamine enhances glutamate-induced excitation of rat striatal neurons by cooperative activation of D1 and D2 class receptors. Neurosci. Lett. 224, 61–65 (1997).

    CAS  PubMed  Article  Google Scholar 

  53. Wolf, M. E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679–720 (1998).

    CAS  PubMed  Article  Google Scholar 

  54. Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    CAS  PubMed  Article  Google Scholar 

  55. Bear, M. F. Progress in understanding NMDA-receptor-dependent synaptic plasticity in the visual cortex. J. Physiol. (Paris) 90, 223–227 (1996).

    CAS  Article  Google Scholar 

  56. Clark, D. & Overton, P. G. Alterations in excitatory amino acid-mediated regulation of midbrain dopaminergic neurons induced by chronic psychostimulant administration and stress: relevance to behavioral sensitization and drug addiction. Addict. Biol. 3, 109–135 (1998).

    CAS  PubMed  Article  Google Scholar 

  57. Malenka, R. C. Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78, 535–538 (1994).

    CAS  PubMed  Article  Google Scholar 

  58. Malenka, R. C. & Nicoll, R. A. Long-term potentiation — a decade of progress? Science 285, 1870–1874 (1999).An up-to-date review of current thinking about LTP in the hippocampus.

    CAS  Article  PubMed  Google Scholar 

  59. Pennartz, C. M., Ameerun, R. F., Groenewegen, H. J. & Lopes da Silva, F. H. Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. Eur. J. Neurosci. 5, 107–117 (1993).

    CAS  PubMed  Article  Google Scholar 

  60. Kombian, S. B. & Malenka, R. C. Simultaneous LTP of non-NMDA- and LTD of NMDA-receptor-mediated responses in the nucleus accumbens. Nature 368, 242–246 (1994).

    CAS  PubMed  Article  Google Scholar 

  61. Thomas, M. J., Malenka, R. C. & Bonci, A. Modulation of long-term depression by dopamine in the mesolimbic system. J. Neurosci. 20, 5581–5586 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. Li, Y. & Kauer, J. A. Amphetamine interferes with long-term potentiation in the nucleus accumbens. Soc. Neurosci. Abstr. 26, 1398 (2000).

    Google Scholar 

  63. Nicola, S. M., Surmeier, J. & Malenka, R. C. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23, 185–215 (2000).Reviews the actions of dopamine on neuronal excitability and synaptic transmission in the striatum.

    CAS  PubMed  Article  Google Scholar 

  64. Calabresi, P., Centonze, D. & Bernardi, G. Electrophysiology of dopamine in normal and denervated striatal neurons. Trends Neurosci. 23, S57–63 (2000).

    CAS  PubMed  Article  Google Scholar 

  65. Calabresi, P., Pisani, A., Mercuri, N. B. & Bernardi, G. The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci. 19, 19–24 (1996).

    CAS  Article  PubMed  Google Scholar 

  66. Choi, S. & Lovinger, D. M. Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. Proc. Natl Acad. Sci. USA 94, 2665–2670 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. Bonci, A. & Malenka, R. C. Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J. Neurosci. 19, 3723–3730 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. Jones, S., Kornblum, J. L. & Kauer, J. A. Amphetamine blocks long-term synaptic depression in the ventral tegmental area. J. Neurosci. 20, 5575–5580 (2000).These two papers describe the basic properties of LTP and LTD in the VTA.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. Kornblum, J. L. & Kauer, J. A. Long-term depression (LTD) in the ventral tegmental area (VTA) requires cyclic AMP dependent protein kinase (PKA). Soc. Neurosci. Abstr. (in the press).

  70. Ungless, M. A., Whisler, J. L., Malenka, R. C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587 (2001).This paper demonstrates that in vivo cocaine administration causes LTP at excitatory synapses in the VTA.

    CAS  PubMed  Article  Google Scholar 

  71. Mansvelder, H. D. & McGehee, D. S. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27, 349–357 (2000).

    CAS  PubMed  Article  Google Scholar 

  72. Vorel, S. R., Liu, X., Hayes, R. J., Spector, J. A. & Gardner, E. L. Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science 292, 1175–1178 (2001).

    CAS  PubMed  Article  Google Scholar 

  73. Legault, M., Rompre, P. P. & Wise, R. A. Chemical stimulation of the ventral hippocampus elevates nucleus accumbens dopamine by activating dopaminergic neurons of the ventral tegmental area. J. Neurosci. 20, 1635–1642 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. Thomas, M. J. & Malenka, R. C. Behavioral sensitization to cocaine is associated with changes in nucleus accumbens synaptic transmission. Soc. Neurosci. Abstr. 26, 791 (2000).

  75. Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993).

    CAS  Article  PubMed  Google Scholar 

  76. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    CAS  PubMed  Article  Google Scholar 

  77. Geinisman, Y., Berry, R. W., Disterhoft, J. F., Power, J. M. & Van der Zee, E. A. Associative learning elicits the formation of multiple-synapse boutons. J. Neurosci. 21, 5568–5573 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. Ingham, C. A., Hood, S. H. & Arbuthnott, G. W. Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age. Brain Res. 503, 334–338 (1989).

    CAS  PubMed  Article  Google Scholar 

  79. Ingham, C. A., Hood, S. H., Van Maldegem, B., Weenink, A. & Arbuthnott, G. W. Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway. Exp. Brain Res. 93, 17–27 (1993).

    CAS  Article  PubMed  Google Scholar 

  80. Meredith, G. E., Ypma, P. & Zahm, D. S. Effects of dopamine depletion on the morphology of medium spiny neurons in the shell and core of the rat nucleus accumbens. J. Neurosci. 15, 3808–3820 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. Ingham, C. A., Hood, S. H., Taggart, P. & Arbuthnott, G. W. Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. J. Neurosci. 18, 4732–4743 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Robinson, T. E. & Kolb, B. Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci. 17, 8491–8497 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. Robinson, T. E. & Kolb, B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 1598–1604 (1999).These two papers show that the chronic in vivo administration of psychostimulants changes the morphology of dendritic spines in the nucleus accumbens and prefrontal cortex.

    CAS  PubMed  Article  Google Scholar 

  84. Hope, B. T. et al. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13, 1235–1244 (1994).

    CAS  PubMed  Article  Google Scholar 

  85. Berke, J. D., Paletzki, R. F., Aronson, G. J., Hyman, S. E. & Gerfen, C. R. A complex program of striatal gene expression induced by dopaminergic stimulation. J. Neurosci. 18, 5301–5310 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Kuhar, M. J., Joyce, A. & Dominguez, G. Genes in drug abuse. Drug Alcohol Depend. 62, 157–162 (2001).

    CAS  PubMed  Article  Google Scholar 

  87. Kelz, M. B. et al. Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 401, 272–276 (1999).

    CAS  PubMed  Article  Google Scholar 

  88. Bibb, J. A. et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410, 376–380 (2001).

    CAS  PubMed  Article  Google Scholar 

  89. Shaywitz, A. J. & Greenberg, M. E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821–861 (1999).

    CAS  PubMed  Article  Google Scholar 

  90. Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    CAS  Article  PubMed  Google Scholar 

  91. Yin, J. C. et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58 (1994).

    CAS  Article  PubMed  Google Scholar 

  92. Nguyen, P. V., Abel, T. & Kandel, E. R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107 (1994).

    CAS  PubMed  Article  Google Scholar 

  93. Frey, U., Frey, S., Schollmeier, F. & Krug, M. Influence of actinomycin D, an RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. J. Physiol. (Lond.) 490, 703–711 (1996).

    CAS  Article  Google Scholar 

  94. Nguyen, P. V. & Kandel, E. R. A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J. Neurosci. 16, 3189–3198 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).

    CAS  PubMed  Article  Google Scholar 

  96. Das, S., Grunert, M., Williams, L. & Vincent, S. R. NMDA and D1 receptors regulate the phosphorylation of CREB and the induction of c-fos in striatal neurons in primary culture. Synapse 25, 227–233 (1997).

    CAS  PubMed  Article  Google Scholar 

  97. Konradi, C., Leveque, J. C. & Hyman, S. E. Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J. Neurosci. 16, 4231–4239 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Cole, R. L., Konradi, C., Douglass, J. & Hyman, S. E. Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14, 813–823 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Hurd, Y. L. & Herkenham, M. Molecular alterations in the neostriatum of human cocaine addicts. Synapse 13, 357–369 (1993).

    CAS  PubMed  Article  Google Scholar 

  100. Spanagel, R., Herz, A. & Shippenberg, T. S. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc. Natl Acad. Sci. USA 89, 2046–2050 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. Steiner, H. & Gerfen, C. R. Dynorphin regulates D1 dopamine receptor-mediated responses in the striatum: relative contributions of pre- and postsynaptic mechanisms in dorsal and ventral striatum demonstrated by altered immediate-early gene induction. J. Comp Neurol. 376, 530–541 (1996).

    CAS  PubMed  Article  Google Scholar 

  102. Shippenberg, T. S., Bals-Kubik, R. & Herz, A. Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors. J. Pharmacol. Exp. Ther. 265, 53–59 (1993).

    CAS  PubMed  Google Scholar 

  103. Shippenberg, T. S. & Rea, W. Sensitization to the behavioral effects of cocaine: modulation by dynorphin and κ-opioid receptor agonists. Pharmacol. Biochem. Behav. 57, 449–455 (1997).

    CAS  PubMed  Article  Google Scholar 

  104. Carlezon, W. A. Jr et al. Regulation of cocaine reward by CREB. Science 282, 2272–2275 (1998).

    CAS  PubMed  Article  Google Scholar 

  105. Spangler, R. et al. Regulation of κ opioid receptor mRNA in the rat brain by 'binge' pattern cocaine administration and correlation with preprodynorphin mRNA. Brain Res. Mol. Brain Res. 38, 71–76 (1996).

    CAS  PubMed  Article  Google Scholar 

  106. Cole, A. J., Bhat, R. V., Patt, C., Worley, P. F. & Baraban, J. M. D1 dopamine receptor activation of multiple transcription factor genes in rat striatum. J. Neurochem. 58, 1420–1426 (1992).

    CAS  PubMed  Article  Google Scholar 

  107. Simpson, J. N., Wang, J. Q. & McGinty, J. F. Repeated amphetamine administration induces a prolonged augmentation of phosphorylated cyclase response element-binding protein and Fos-related antigen immunoreactivity in rat striatum. Neuroscience 69, 441–457 (1995).

    CAS  PubMed  Article  Google Scholar 

  108. Lyford, G. L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995).

    CAS  PubMed  Article  Google Scholar 

  109. Cole, A. J., Saffen, D. W., Baraban, J. M. & Worley, P. F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474–476 (1989).

    CAS  PubMed  Article  Google Scholar 

  110. O'Brien, R. J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23, 309–323 (1999).

    CAS  PubMed  Article  Google Scholar 

  111. Yamagata, K. et al. Egr3/Pilot, a zinc finger transcription factor, is rapidly regulated by activity in brain neurons and colocalizes with Egr1/zif268. Learn. Mem. 1, 140–152 (1994).

    CAS  PubMed  Google Scholar 

  112. Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 28, 309–369 (1998).

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Hyman.

Related links

Related links

DATABASES

LocusLink

adenylyl cyclase

AMPAR

Arc

calmodulin

CaMKIV

CBP

Cdk5

CREB

D1 receptor

D2 receptor

dynorphin

ELK1

Fos

ΔFosB

GluR2

Homer

Jun

MKP-1

Narp

NMDAR

κ-opioid receptor

PKA

POLR2

RSK

SRF

TBP

MIT Encyclopedia of Cognitive Sciences

magnetic resonance imaging

positron emission tomography

Glossary

ASYMMETRICAL SYNAPSES

Synaptic contacts in which the postsynaptic thickening is wider than the presynaptic one. They are thought to comprise largely excitatory connections. Symmetrical synapses, in contrast, are characterized by pre- and postsynaptic thickenings of roughly similar widths and are thought to be inhibitory.

CONDITIONED PLACE PREFERENCE

The development in an experimental animal of a preference for a location that is repeatedly paired with a rewarding stimulus (for example, cocaine).

IMMEDIATE-EARLY GENES

Genes that are induced rapidly and transiently without a need for new protein synthesis. Many immediate-early genes, such as Fos, control the transcription of other genes, and thereby provide the early stages in the control of the production of specific proteins.

DYSPHORIA

A negative or aversive emotional state that is usually associated with anxiety and depression.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hyman, S., Malenka, R. Addiction and the brain: The neurobiology of compulsion and its persistence. Nat Rev Neurosci 2, 695–703 (2001). https://doi.org/10.1038/35094560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35094560

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing