Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cancer genetics: from Boveri and Mendel to microarrays

Abstract

The human genome has now been sequenced, a century after the re-discovery of Mendel's Laws, and the publication of Theodor Boveri's chromosomal theory of heredity. Tracing the historical landmarks of cancer genetics from these early days to the present time not only gives us an appreciation of how far we have come, but also emphasizes the challenges that we face if we are to unravel the genetic basis of hereditary and sporadic cancers in the next century.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A portrait of Theodor Boveri.
Figure 2: Multiple cell poles cause unequal segregation of chromosomes.

References

  1. Mendel, G. Versuche uber pflanzen hybriden. Verh. Naturforsch. Ver. Brunn. 4, 3–47 (1866).

    Google Scholar 

  2. Wilson, E. B. Erinnerungen an Theodor Boveri (ed. Roentgen, W. C.) (J. C. B. Mohr, Tuebingen, Germany, 1918).

    Google Scholar 

  3. Boveri, T. Uber mehrpolige mitosen als mittel zur analyse des zellkerns. Verh. D. Phys. Med. Ges. Wurzberg N. F. 35, 67–90 (1902).

    Google Scholar 

  4. Boveri, T. Uber die konstitution der chromatischen kernsubstanz. Verh. D. Zool. Ges. 13, (1903).

  5. Boveri, T. Ergebnisse uber die konstitution der chromatischen substanz des zellkerns (Gustav Fischer, Jena, 1904).

    Google Scholar 

  6. Boveri, T. In Zur Frage der Entstehung Maligner Tumoren 1–64 (Gustav Fisher, Jena, 1914).

    Google Scholar 

  7. Stehelin, D., Varmus, H. E., Bishop, J. M. & Vogt, P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170–173 (1976).

    CAS  Article  Google Scholar 

  8. Bishop, J. M. Enemies within: the genesis of retroviral oncogenes. Cell 23, 5–6 (1981).

    CAS  Article  Google Scholar 

  9. Nowell, P. & Hungerford, D. Chromosomes of normal and leukemic human leucocytes. J. Natl Cancer Inst. 25, 85 (1960).

    CAS  Google Scholar 

  10. Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukemia. Nature 243, 290–293 (1973).

    CAS  Article  Google Scholar 

  11. Heisterkamp, N. et al. Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 306, 239–242 (1983).

    CAS  Article  Google Scholar 

  12. Druker, B. J. et al. Activity of a specific inhibitor of the BCR–ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344, 1038–1042 (2001).

    CAS  Article  Google Scholar 

  13. Nowell, P. C., Rowley, J. D. & Knudson, A. G. Jr. Cancer genetics, cytogenetics — defining the enemy within. Nature Med. 10, 1107–1111 (1998).

    Article  Google Scholar 

  14. Shih, C. et al. Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc. Natl Acad. Sci. USA 11, 5714–5718 (1979).

    Article  Google Scholar 

  15. Tabin, C. J. et al. Mechanism of activation of a human oncogene. Nature 300, 143–149 (1982).

    CAS  Article  Google Scholar 

  16. Reddy, E. P., Reynold, R. K., Santos, E. & Barbacid, M. A point mutation is responsible for the acquisition of transforming properties of the T24 human bladder carcinoma oncogene. Nature 300, 149–152 (1982).

    CAS  Article  Google Scholar 

  17. Taparowsky, E. et al. Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300, 762–765 (1982).

    CAS  Article  Google Scholar 

  18. Balmain, A. & Pragnell, I. B. Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature 303, 72–74 (1983).

    CAS  Article  Google Scholar 

  19. Sukumar, S., Notario, V., Martin-Zanca, D. & Barbacid, M. Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature 306, 658–661 (1983).

    CAS  Article  Google Scholar 

  20. Quintanilla, M., Brown, K., Ramsden, M. & Balmain, A. Carcinogen-specific mutation and amplification of the Ha-ras gene during mouse skin carcinogenesis. Nature 322, 78–80 (1986).

    CAS  Article  Google Scholar 

  21. Friend, S. H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    CAS  Article  Google Scholar 

  22. Whyte, P. et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124–129 (1988).

    CAS  Article  Google Scholar 

  23. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    CAS  Article  Google Scholar 

  24. Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  Google Scholar 

  25. Cavenee, W. K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–781 (1983).

    CAS  Article  Google Scholar 

  26. Groden, J. et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600 (1991).

    CAS  Article  Google Scholar 

  27. Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669 (1991).

    CAS  Article  Google Scholar 

  28. Kinzler, K. W. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665 (1991).

    CAS  Article  Google Scholar 

  29. Futreal, P. A. et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 266, 120–122 (1994).

    CAS  Article  Google Scholar 

  30. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    CAS  Article  Google Scholar 

  31. Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979).

    CAS  Article  Google Scholar 

  32. Linzer, D. I. & Levine, A. J. Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43–52 (1979).

    CAS  Article  Google Scholar 

  33. Wolf, D. & Rotter, V. Inactivation of p53 gene expression by an insertion of Moloney murine leukemia virus-like DNA sequences. Mol. Cell. Biol. 4, 1402–1410 (1984).

    CAS  Article  Google Scholar 

  34. Wolf, D. & Rotter, V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc. Natl Acad. Sci. USA 82, 790–794 (1985).

    CAS  Article  Google Scholar 

  35. Mowat, M., Cheng, A., Kimura, N., Bernstein, A. & Benchimol, S. Rearrangements of the cellular p53 gene in erythroleukaemic cells transformed by Friend virus. Nature 314, 633–636 (1985).

    CAS  Article  Google Scholar 

  36. Fearon, E. R., Hamilton, S. R. & Vogelstein, B. Clonal analysis of human colorectal tumors. Science 238, 193–197 (1987).

    CAS  Article  Google Scholar 

  37. Baker, S. J. et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244, 217–221 (1989).

    CAS  Article  Google Scholar 

  38. Baker, S. J., Markowitz, S., Fearon, E. R., Willson, J. K. & Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249, 912–915 (1990).

    CAS  Article  Google Scholar 

  39. Lane, D. P. p53 guardian of the genome. Nature 358, 15–16 (1992).

    CAS  Article  Google Scholar 

  40. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science 250, 1233–1238 (1990).

    CAS  Article  Google Scholar 

  41. Loeb, L. A., Springgate, C. F. & Battula, N. Errors in DNA replication as a basis of malignant change. Cancer Res. 34, 2311–2321 (1974).

    CAS  PubMed  Google Scholar 

  42. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic neoplasia. Nature 363, 558–561 (1993).

    CAS  Article  Google Scholar 

  43. Thibodeau, S. N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    CAS  Article  Google Scholar 

  44. Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236 (1993).

    CAS  Article  Google Scholar 

  45. Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    CAS  Article  Google Scholar 

  46. Blackburn, E. H. & Challoner, P. B. Identification of a telomeric DNA sequence in Trypanosoma brucei. Cell 36, 447–457 (1984).

    CAS  Article  Google Scholar 

  47. Hastie, N. D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–869 (1990).

    CAS  Article  Google Scholar 

  48. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    CAS  Article  Google Scholar 

  49. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    CAS  Article  Google Scholar 

  50. Meyerson, M. et al. hEST2 the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).

    CAS  Article  Google Scholar 

  51. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    CAS  Article  Google Scholar 

  52. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998).

    CAS  Article  Google Scholar 

  53. Ponder, B. Cancer genetics. Nature 17, 336–341 (2001).

    Article  Google Scholar 

  54. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer — analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000).

    CAS  Article  Google Scholar 

  55. Balmain, A. & Nagase, H. Cancer resistance genes in mice: models for the study of tumour modifiers. Trends Genet. 14, 139–144 (1998).

    CAS  Article  Google Scholar 

  56. Fijneman, R. J., de Vries, S. S., Jansen, R. C. & Demant, P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nature Genet. 14, 465–467 (1996).

    CAS  Article  Google Scholar 

  57. Wright, S. Genic and organismic selection. Evolution 34, 825–843 (1980).

    Article  Google Scholar 

  58. Kinzler, K. W. & Vogelstein, B. Gatekeepers and caretakers. Nature 386, 761–763 (1997).

    CAS  Article  Google Scholar 

  59. Albertson, D. G. et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nature Genet. 25, 144–146 (2001).

    Article  Google Scholar 

  60. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    CAS  Article  Google Scholar 

  61. Haab, B. B., Dunham, M. J. & Brown, P. O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, 1–13 (2001).

    Article  Google Scholar 

  62. Gibbs, W. W. Cybernetic cells. Sci. Am. 285, 52–57 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Work in the author's laboratory has been supported mainly by the Cancer Research Campaign (UK) and by the National Cancer Institute (USA). I am grateful to colleagues and the anonymous reviewers for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

CancerNet

chronic myeloid leukaemia

LocusLink

APC

BRCA1

BRCA2

HRAS

TP53

Trp53

RB

 OMIM

hereditary non-polyposis colorectal cancer

xeroderma pigmentosum

FURTHER INFORMATION

Theodor Boveri

Baltzer on Boveri

Computer models of cellular signalling

Human Genome Sequence

Mendel's Genetics

MendelWeb

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Balmain, A. Cancer genetics: from Boveri and Mendel to microarrays. Nat Rev Cancer 1, 77–82 (2001). https://doi.org/10.1038/35094086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35094086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing