Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How nucleotide excision repair protects against cancer

Key Points

  • Living cells respond to DNA damage by a variety of mechanisms, including a series of biochemical pathways called DNA repair. These include three discrete pathways for the excision of damaged bases, called base excision repair, mismatch repair and nucleotide excision repair (NER).

  • NER in human cells is a complex biochemical process during which a large multiprotein complex is assembled at several types of base damage. This multiprotein complex (NER machine) catalyses the excision of damaged bases as oligonucleotide fragments.

  • The RNA polymerase II basal transcription factor, TFIIH, is an integral component of the NER multiprotein complex.

  • NER operates somewhat differently on DNA that is transcriptionally active (transcription-coupled repair) and that which is transcriptionally silent (global genome repair).

  • Defective NER in humans caused by genetically inherited mutations in NER genes results in the skin-cancer-prone disease xeroderma pigmentosum.

  • Hereditary defects in transcription-coupled NER can result in a disease called Cockayne syndrome, which is characterized by severe developmental and neurological disorders.

  • Mutational inactivation of certain NER genes can result in a combined syndrome of xeroderma pigmentosum and Cockayne syndrome, or in yet another disease called trichothiodystrophy, which is characterized by brittle hair and nails.

  • Cockayne syndrome, combined xeroderma pigmentosum/Cockayne syndrome complex and trichothiodystrophy are not usually associated with increased cancer risk.

  • Mouse mutant strains generated by targeted gene replacement have been constructed to model these human NER-defective syndromes.

Abstract

Eukaryotic cells can repair many types of DNA damage. Among the known DNA repair processes in humans, one type — nucleotide excision repair (NER) — specifically protects against mutations caused indirectly by environmental carcinogens. Humans with a hereditary defect in NER suffer from xeroderma pigmentosum and have a marked predisposition to skin cancer caused by sunlight exposure. How does NER protect against skin cancer and possibly other types of environmentally induced cancer in humans?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The balance of life.
Figure 2: The essential features of nucleotide excision repair.
Figure 3: Transcription-coupled nucleotide excision repair.

References

  1. Friedberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis. (ASM Press, Washington, 1995).

    Google Scholar 

  2. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    CAS  Article  PubMed  Google Scholar 

  3. Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 (1999).

    CAS  PubMed  Google Scholar 

  4. Lindahl, T. The Croonian Lecture, 1996: endogenous damage to DNA. Phil. Trans. R. Soc. Lond. B 351, 1529–1538 (1996).

    CAS  Google Scholar 

  5. Walker, G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48, 60–93 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem. 69, 497–529 (2000).

    CAS  PubMed  Google Scholar 

  7. Hoeijmakers, J. H. J. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    CAS  PubMed  Google Scholar 

  8. Friedberg, E. C. Summary: Biological responses to DNA damage: a perspective in the new millennium. Cold Spring Harbor Symp. Quant. Biol. 65, 593–602 (2000).

    CAS  PubMed  Google Scholar 

  9. Lindahl, T., Karran, P. & Wood, R. D. DNA excision repair pathways. Curr. Opin. Genet. Dev. 7, 158–169 (1997).

    CAS  PubMed  Google Scholar 

  10. Friedberg, E. C. & Wood, R. D. in DNA Replication in Eukaryotic Cells (ed. dePamphilis, M.) 249–269 (Cold Spring Harbor Laboratory Press, Long Island, 1996).

    Google Scholar 

  11. Sancar, A. DNA excision repair. Annu. Rev. Biochem. 65, 43–81 (1996).

    CAS  PubMed  Google Scholar 

  12. Lindahl, T. Suppression of spontaneous mutagenesis in human cells by DNA base excision repair. Mutat. Res. 462, 129–135 (2000).

    CAS  PubMed  Google Scholar 

  13. Memisoglu, A. & Samson, L. Base excision repair in yeast and mammals. Mutat. Res. 451, 39–51 (2000).

    CAS  PubMed  Google Scholar 

  14. Mol, C. D., Parikh, S. S., Putnam, C. D., Lo, T. P. & Tainer, J. A. DNA repair mechanisms for the recognition and removal of damaged DNA bases. Annu. Rev. Biophys. Biomol. Struct. 28, 101–128 (1999).

    CAS  PubMed  Google Scholar 

  15. Krokan, H. E., Nilsen, H., Skorpen, F., Otterlei, M. & Slupphaug, G. Base excision repair of DNA in mammalian cells. FEBS Lett. 476, 73–77 (2000).

    CAS  PubMed  Google Scholar 

  16. McCullough, A. K., Dodson, M. L. & Lloyd, R. S. Initiation of base excision repair: glycosylase mechanisms and structures. Annu. Rev. Biochem. 68, 255–285 (1999).

    CAS  PubMed  Google Scholar 

  17. Parikh, S. S., Mol, C. D., Hosfield, D. J. & Tainer, J. A. Envisioning the molecular choreography of DNA base excision repair. Curr. Opin. Struct. Biol. 9, 37–47 (1999).

    CAS  PubMed  Google Scholar 

  18. de Boer, J. & Hoeijmakers, J. H. J. Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453–460 (2000).

    CAS  PubMed  Google Scholar 

  19. Prakash, S. & Prakash, L. Nucleotide excision repair in yeast. Mutat. Res. 451, 13–24 (2000).

    CAS  PubMed  Google Scholar 

  20. de Laat, W. L., Jaspers, N. G. J. & Hoeijmakers, J. H. J. Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768–785 (1999).

    CAS  PubMed  Google Scholar 

  21. Petit, C. & Sancar, A. Nucleotide excision repair: from E. coli to man. Biochimie 81, 15–25 (1999).

    CAS  PubMed  Google Scholar 

  22. Wood, R. D. Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272, 23465–23468 (1997).

    CAS  PubMed  Google Scholar 

  23. Buermeyer, A. B., Deschenes, S. M., Baker, S. M. & Liskay, R. M. Mammalian DNA mismatch repair. Annu. Rev. Genet. 33, 533–564 (1999).

    CAS  PubMed  Google Scholar 

  24. Modrich, P. Strand-specific mismatch repair in mammalian cells. J. Biol. Chem. 272, 24727–24730 (1997).

    CAS  PubMed  Google Scholar 

  25. Svejstrup, J. Q. et al. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 80, 21–28 (1995).An early contribution to our understanding of the role of the transcription factor TFIIH in NER in yeast.

    CAS  PubMed  Google Scholar 

  26. Rodriguez, K. et al. Affinity purification and partial characterization of a yeast multiprotein complex for nucleotide excision repair using histidine-tagged Rad14 protein. J. Biol. Chem. 273, 34180–34189 (1998).

    CAS  PubMed  Google Scholar 

  27. Guzder, S. N., Sung, P., Prakash, L. & Prakash, S. Nucleotide excision repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J. Biol. Chem. 271, 8903–8910 (1996).

    CAS  PubMed  Google Scholar 

  28. Aboussekhra, A. et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80, 859–868 (1995).

    CAS  PubMed  Google Scholar 

  29. Wakasugi, M. & Sancar, A. Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc. Natl Acad. Sci. USA 95, 6669–6674 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Guzder, S. N., Habraken, Y., Sung, P., Prakash, L. & Prakash, S. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J. Biol. Chem. 270, 12973–12976 (1995).References 28–30 are landmark studies on the reconstitution of NER in vitro with purified proteins.

    CAS  PubMed  Google Scholar 

  31. Levin, D. S., McKenna, A. E., Motycka, T. A., Matsumoto, Y. & Tomkinson, A. E. Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base excision repair. Curr. Biol. 10, 919–922 (2000).

    CAS  PubMed  Google Scholar 

  32. Kornberg, R. D. & Lorch, Y. Chromatin structure and transcription. Annu. Rev. Cell Biol. 8, 563–587 (1992).

    CAS  PubMed  Google Scholar 

  33. Robertson, K. D. & Jones, P. A. Dynamic interrelationships between DNA replication, methylation and repair. Am. J. Hum. Genet. 61, 1220–1224 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Thoma, F. Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair. EMBO J. 18, 6585–6598 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sugasawa, K. et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 15, 507–521 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wood, R. D. DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie 81, 39–44 (1999).

    CAS  PubMed  Google Scholar 

  37. Naegeli, H. in DNA Recombination and Repair (eds Smith, P. & Jones, C.) 99–137 (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  38. Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global genomic nucleotide excision repair. Mol. Cell 2, 223–232 (1998).An important study, explaining the role of XPC protein in the recognition of base damage during NER.

    CAS  PubMed  Google Scholar 

  39. Masutani, C. et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homolog of yeast RAD23. EMBO J. 13, 1831–1843 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sugasawa, K. et al. HHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol. Cell. Biol. 16, 4852–4861 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Araki, M. et al. Centrosome protein centrin2/caltractin1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J. Biol. Chem. 276, 18665–18672 (2001).

    CAS  PubMed  Google Scholar 

  42. Hess, M. T., Schwitter, U., Petretta, M., Giese, B. & Naegeli, H. Bipartite substrate discrimination by human nucleotide excision repair. Proc. Natl Acad. Sci. USA 94, 6664–6669 (1997).An excellent contribution to recent models for the molecular basis of damage recognition during NER.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Friedberg, E. C. Relationships between DNA repair and transcription. Annu. Rev. Biochem. 65, 15–42 (1996).

    CAS  PubMed  Google Scholar 

  44. Hanawalt, P. C. Transcription-coupled repair and human disease. Science 266, 1957–1958 (1994).

    CAS  PubMed  Google Scholar 

  45. Hanawalt, P. C. & Spivak, G. in Advances in DNA Repair (eds Dizdaroglu, M. & Karakaya, A.) 169–179 (Academic/Plenum Publishing, New York, 1999).

    Google Scholar 

  46. Tsutakawa, S. E. & Cooper, P. K. Transcription-coupled repair of oxidative DNA damage in human cells: mechanisms and consequences. Cold Spring Harbor Symp. Quant. Biol. 65, 201–215 (2000).

    CAS  PubMed  Google Scholar 

  47. Friedberg, E. C. Cockayne Syndrome: a primary defect in DNA repair, transcription, both or neither? BioEssays 18, 731–738 (1996).

    CAS  PubMed  Google Scholar 

  48. Hebra, F. & Kaposi, M. On Diseases of the Skin, including the Exanthemata. Vol. 16 (translated by W. Tay, London) 252–258 (New Sydenham Society, London, 1874).

    Google Scholar 

  49. Cleaver, J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature 218, 652–656 (1968).

    CAS  PubMed  Google Scholar 

  50. Setlow, R. B., Regan, J. D., German, J. & Carrier. W. L. Evidence that xeroderma pigmentosum cells do not perform the first step in the repair of ultraviolet damage to their DNA. Proc. Natl Acad. Sci. USA 64, 1035–1041 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cleaver, J. E. & Kraemer, K. H. in The Metabolic and Molecular Basis of Inherited Disease (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 4393–4419 (McGraw–Hill, New York, 1995).

    Google Scholar 

  52. Bootsma, D., Kraemer, K. H., Cleaver, J. E. & Hoeijmakers, J. H. H. in The Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K, W.) 245–274 (McGraw–Hill, New York, 1998).

    Google Scholar 

  53. Hoeijmakers, J. H. J. Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. Eur. J. Cancer 30A, 1912–1921 (1994).

    CAS  PubMed  Google Scholar 

  54. Masutani, C. et al. Xeroderma pigmentosum variant: from a human genetic disorder to a novel DNA polymerase. Cold Spring Harbor Symp. Quant. Biol. 65, 71–80 (2000).

    CAS  PubMed  Google Scholar 

  55. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    CAS  PubMed  Google Scholar 

  56. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    CAS  PubMed  Google Scholar 

  57. Friedberg, E. C. Cancer predisposition associated with defective DNA repair-studies with mutant mouse strains. Cancer J. Sci. Am. 5, 257–263 (1999).

    CAS  PubMed  Google Scholar 

  58. Friedberg, E. C. & Meira, L. B. Database of mouse strains carrying targeted mutations in genes affecting cellular responses to DNA damage. Version 4. Mutat. Res. 459, 243–274 (2000).A comprehensive database of mouse mutants defective in various DNA repair modes.

    CAS  PubMed  Google Scholar 

  59. de Vries, A. & van Steeg, H. Xpa knockout mice. Sem. Can. Biol. 7, 229–240 (1996).

    CAS  Google Scholar 

  60. Cheo, D. L., Burns D. K., Meira, L. B., Houle, J. F. & Friedberg, E. C. Mutational inactivation of the xeroderma pigmentosum group C gene confers predisposition to 2-acetylaminofluorene-induced liver and lung cancer and to spontaneous testicular cancer in Trp53−/− mice. Cancer Res. 59, 771–775 (1999).

    CAS  PubMed  Google Scholar 

  61. Hanawalt, P. C. Revisiting the rodent repairadox. Env. Mol. Mutagen. (in the press).

  62. Swift, M. & Chase, C. Cancer in families with xeroderma pigmentosum. J. Natl Cancer Inst. 62, 1415–1421 (1979).

    CAS  PubMed  Google Scholar 

  63. Cheo, D. L., Meira, L. B., Burns, D. K, Reis, A. M. & Friedberg, E. C. UVB radiation-induced skin cancer in mice defective in the Xpc, Trp53 and Apex (HAP1) genes: genotype-specific effects on cancer predisposition and pathology of tumors. Cancer Res. 60, 1580–1584 (2000).

    CAS  PubMed  Google Scholar 

  64. Wijnhoven, S. W. P. et al. Age-dependent spontaneous mutagenesis in Xpc mice defective in nucleotide excision repair. Oncogene 19, 5034–5037 (2000).

    CAS  PubMed  Google Scholar 

  65. McWhir, J., Selfridge, J., Harrison, D. J., Squires, S. & Melton, D. W. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nature Genet. 5, 217–224 (1993).

    CAS  PubMed  Google Scholar 

  66. Weeda, G. et al. Disruption of the mouse ERCC1 gene results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr. Biol. 7, 427–439 (1997).

    CAS  PubMed  Google Scholar 

  67. Taylor, E. M. et al. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD(ERCC2) repair/transcription gene. Proc. Natl Acad. Sci. USA 94, 8658–8663 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lehmann, A. R. The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev. 15, 15–23 (2000).

    Google Scholar 

  69. Vermeulen, W. et al. Three unusual repair deficiencies associated with transcription factor BTF2 (TFIIH). Evidence for the existence of a transcription syndrome. Cold Spring Harb, Symp. Quant. Biol. 54, 317–329 (1994).

    Google Scholar 

  70. de Boer, J. et al. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol. Cell 1, 981–990 (1998).

    CAS  PubMed  Google Scholar 

  71. Vermeulen, W. et al. Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder. Nature Genet. 26, 307–313 (2000).

    CAS  PubMed  Google Scholar 

  72. Harada, Y.-N. et al. Post-natal growth failure, a short life span, and early onset of cellular senescence and subsequent immortalization in mice lacking the xeroderma pigmentosum group G gene. Mol. Cell. Biol. 19, 2366–2372 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nouspiekel, T., Lalle, P., Leadon, S. A., Cooper, P. K. & Clarkson, S. G. A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc. Natl Acad. Sci. USA 94, 3116–3121 (1997).

    Google Scholar 

  74. Le Page, F. et al. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101, 159–171 (2000).An excellent recent contribution to the complexities of transcription-coupled DNA repair.

    CAS  PubMed  Google Scholar 

  75. van der Horst, G. T. J. et al. Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell 89, 425–435 (1997).

    CAS  PubMed  Google Scholar 

  76. Lu, Y. et al. Disruption of the Cockayne syndrome B gene impairs spontaneous tumorigenesis in cancer-predisposed Ink4a/ARF knockout mice. Mol. Cell. Biol. 21, 1810–1818 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Stillman, B. Foreword. Cold Spring Harbor Symp. Quant. Biol. 65, 21 (2000).

    Google Scholar 

  78. Gillette, T. et al. The proteasome 19S complex regulates nucleotide excision repair in yeast. Genes Dev. 15, 1528–1539 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yasuhira, S. & Yasui, A. Alternative excision repair pathway of UV-damaged DNA in Schizosaccharomyces pombe operates both in nucleus and in mitochondria. J. Biol. Chem. 275, 11824–11828 (2000).

    CAS  PubMed  Google Scholar 

  80. Kaur, B. & Doetsch, P. Ultraviolet damage endonuclease (Uve1p): a structure and strand-specific DNA endonuclease. Biochemistry 39, 5788–5796 (2000).

    CAS  PubMed  Google Scholar 

  81. Lunn, R. M. et al. XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis 21, 551–555 (2000).

    CAS  PubMed  Google Scholar 

  82. Tomescu, D., Kavanagh, G., Ha, T., Campbell, H. & Melton, D. W. Nucleotide excision repair gene XPD polymorphisms and genetic predisposition to melanoma. Carcinogenesis 22, 403–408 (2001).

    CAS  PubMed  Google Scholar 

  83. Shen, H. et al. An intronic poly (AT) polymorphism of the DNA repair gene XPC and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Res. 61, 3321–3325 (2001).

    CAS  PubMed  Google Scholar 

  84. Zhou, B.-B. S. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    CAS  PubMed  Google Scholar 

  85. Walker, G. C. Understanding the complexity of an organism's responses to DNA damage. Cold Spring Harb. Symp. Quant. Biol. 65, 1–10 (2000).

    CAS  PubMed  Google Scholar 

  86. Jiricny, J. & Nystrom-Lahti, M. Mismatch repair defects in cancer. Curr. Opin. Genet. Dev. 10, 157–161 (2000).

    CAS  PubMed  Google Scholar 

  87. Robbins, J. H., Kraemer, K. H., Lutzner, M. A., Festoff, B. W. & Coon, G. Xeroderma pigmentosum. An inherited disease with sun sensitivity, multiple cutaneous neoplasms and abnormal DNA repair. Ann. Intern. Med. 80, 221–248 (1974).

    CAS  PubMed  Google Scholar 

  88. Takebe, H. et al. DNA repair characteristics and skin cancers of xeroderma pigmentosum patients in Japan. Cancer Res. 367, 490–495 (1977).

    Google Scholar 

  89. Kraemer, K. H., Myung, M. L. & Scotto, J. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch. Derm. 123, 241–250 (1987).

    CAS  PubMed  Google Scholar 

  90. Prakash, S. et al. Role of yeast and human DNA polymerase η in error-free replication of damaged DNA. Cold Spring Harb. Symp. Quant. Biol. 65, 51–59 (2000).

    CAS  PubMed  Google Scholar 

  91. Gerlach, V. L. et al. Human DNA polymerase κ: a novel DNA polymerase in search of a biological function. Cold Spring Harbor Symp. Quant. Biol. 65, 41–49 (2000).

    CAS  PubMed  Google Scholar 

  92. Cockayne, E. A. Dwarfism with retinal atrophy and deafness. Arch. Dis. Child. 11, 1–8 (1936).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Nance, M. A. & Berry, S. A. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 42, 68–84 (1992).

    CAS  PubMed  Google Scholar 

  94. Schmickel, R. D., Chu, E. H. Y., Trosko, J. E. & Chang, C. C. Cockayne syndrome: a cellular sensitivity to ultraviolet light. Pediatrics 60, 135–139 (1977).

    CAS  PubMed  Google Scholar 

  95. Rapin, I., Lindenbaum, Y., Dickson, D. W., Kraemer, K. H. & Robbins, J. H. Cockayne syndrome and xeroderma pigmentosum. DNA repair disorders with overlaps and paradoxes. Neurology 55, 1442–1449 (2000).

    CAS  PubMed  Google Scholar 

  96. Berneburg, M. & Lehmann, A. R. Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv. Genet. 43, 71–102 (2001).

    CAS  PubMed  Google Scholar 

  97. Lehmann, A. R., Kirk-Bell, S. and Mayne, L. Abnormal kinetics of DNA synthesis in ultraviolet light-irradiated cells from patients with Cockayne's syndrome. Cancer Res. 39, 4237–4241 (1979).

    CAS  PubMed  Google Scholar 

  98. Venema, J., Mullenders, L. H. F., Natarajan, A. T., van Zeeland, A. A. & Mayne, L. V. The genetic defect in Cockayne's syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl Acad. Sci. USA 87, 4704–4711 (1990).

    Google Scholar 

  99. van Gool, A. J., van der Horst, T. J., Citterio, E. & Hoeijmakers, J. H. J. Cockayne syndrome: defective repair or transcription? EMBO J. 14, 4155–4162 (1997).

    Google Scholar 

  100. Hanawalt, P. C. DNA repair. The bases for Cockayne syndrome. Nature 405, 415–416 (2000).

    CAS  PubMed  Google Scholar 

  101. Itin, P. H., Sarasin, A. & Pittelkow, M. R. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndrome. J. Am. Acad. Dermatol. 44, 891–920 (2001).

    CAS  PubMed  Google Scholar 

  102. Weeda, G. et al. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Am. J. Hum. Genet. 60, 320–329 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Stefanini, M. et al. A new nucleotide-excision-repair gene associated with the disorder trichothiodystrophy. Am. J. Hum. Genet. 53, 817–821 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I apologize to numerous colleagues for the omission of many pertinent references owing to space constraints. I also gratefully acknowledge B. Stewart for outstanding assistance with the illustrations, and L. Queimado, R. Rolig, M. Liskay and P. Modrich for critical reading of some or all of the manuscript.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASES

CancerNet:

basal cell carcinomas

squamous cell carcinomas

testicular tumours

 LocusLink:

centrin2/caltractin1

CSA

CSB

Csb

DNA ligase I

ERCC1

Ercc1

HHRAD23A

HHRAD23B

Ink4a −/−

ARF −/−

PCNA

Trp53

XPA

Xpa

XPB

XPC

Xpc

XPD

XPF

XPG

XPV

 OMIM

Cockayne syndrome

xeroderma pigmentosum

 Saccharomyces Genome Database:

RAD23

FURTHER INFORMATION

DNA repair genes

Gene cards

Xeroderma Pigmentosum Society

Glossary

BASE DAMAGE

Any change in the chemistry of the nitrogenous bases in DNA (adenine, thymine, guanine or cytosine), as well as the presence of inappropriate bases such as uracil, which is normally only in RNA.

REPLICATION FORK

The region of replicating DNA in which active DNA synthesis is occurring to generate two copies of the parental DNA.

REPAIR SYNTHESIS

A mode of DNA synthesis that is associated with DNA repair rather than with replication. Sometimes called conservative DNA synthesis to distinguish it from the semi-conservative DNA synthesis that characterizes replication.

SEMI-CONSERVATIVE

This term refers to the way in which double-stranded DNA is replicated in all cells. During replication, each of the parental DNA strands is partitioned to a new double-stranded DNA molecule. So one half of the parental DNA is conserved, hence semi-conservative.

REACTIVE OXYGEN SPECIES

(ROS). Highly reactive chemical radicals that are generated as products of oxygen degradation.

COMPLEMENTATION GROUP

This refers to a genetic grouping of individuals, based on the fact that cells from individuals in any complementation group cannot correct a phenotypic defect among themselves, but can correct it in cells from other groups. Individuals in a given complementation group usually carry mutations in the same gene.

BASAL TRANSCRIPTION FACTORS

A set of protein complexes that associate with RNA polymerase II during the initiation of all mRNA synthesis. Sometimes called general transcription factors.

ENDONUCLEASES

Enzymes that cut the sugar–phosphate backbone of DNA (or RNA) at sites other than the free ends of linear DNA (which are degraded by exonucleases).

SOMATIC MUTATION THEORY

A theory on the pathogenesis of cancer that essentially postulates that cancer in somatic cells arises from mutations. More recently, the theory has been adapted to specifically implicate mutations in oncogenes or tumour suppressor genes.

HAPLOINSUFFICIENCY

A phenotypic state that results from loss of one functional allele of any given gene in diploid cells. Sometimes also called allelic insufficiency.

HPRT GENE

A gene that encodes hypoxanthine phosphoribosyltransferase. It is a convenient marker for measuring mutation frequency in cells, because cells with a mutant HPRT gene require supplementation with 6-thioguanine to grow.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Friedberg, E. How nucleotide excision repair protects against cancer. Nat Rev Cancer 1, 22–33 (2001). https://doi.org/10.1038/35094000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35094000

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing