Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Green revolution: the way forward


The origin of agriculture led to the domestication of many plant species and to the exploitation of natural resources. It took almost 10,000 years for food grain production to reach 1 billion tons, in 1960, and only 40 years to reach 2 billion tons, in 2000. This unprecedented increase, which has been named the 'green revolution', resulted from the creation of genetically improved crop varieties, combined with the application of improved agronomic practices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sketches of different plant types of rice.


  1. Paddock, W. & Paddock, P. Famine 1975! (Little, Brown & Co., Boston, Massachusetts, 1967).

    Google Scholar 

  2. Johnson, E. C., Fischer, K. S., Edmeades, G. O. & Palmer, F. E. Recurrent selection for reduced plant height in lowland tropical maize. Crop Sci. 26, 253–260 (1986).

    Article  Google Scholar 

  3. Khush, G. S. in New Frontiers in Rice Research (eds Muralidharan, K. & Sissue, E. A.) 68–75 (Directorate of Rice Research, Hyderabad, India, 1993).

    Google Scholar 

  4. Rajaram, S. & van Ginkel, M. in Increasing the Yield Potential in Wheat: Breaking the Barriers (eds Reynolds, M. P., Rajaram, S. & McNab, A.) 11–18 (CIMMYT, Mexico D.F., 1996).

    Google Scholar 

  5. Yuan, L. P., Virmani, S. S. & Mao, C. X. (eds) in Progress in Irrigated Rice Research 219–235 (International Rice Research Institute, Manila, the Philippines, 1989).

    Google Scholar 

  6. Jordan, J. in Increasing the Yield Potential in Wheat: Breaking the Barriers (eds Reynolds, M. P., Rajaram, S. & McNab, A.) 66–75 (CIMMYT, Mexico D.F., 1996).

    Google Scholar 

  7. Borlaug, N. E. in 3rd International Wheat Genetics Symposium (eds Finlay, K. W. & Shepherd, K. W.) 1–36 (Plenum, New York, 1968).

    Google Scholar 

  8. Suh, H. S. & Hue, M. H. The segregation mode of plant height in the cross of rice varieties. XI. Linkage analysis of the semi-dwarfness of the rice variety 'Tongil'. Korean J. Breed. 10, 1–6 (1978).

    Google Scholar 

  9. Duvick, D. N. in Genetic Contributions to Yield Gains of Five Major Crop Plants (ed. Fehr, W. R.) 15–47 (CSSA Special Publication No. 7, Crop Science Society of America and American Society of Agronomy, Madison, Wisconsin, 1984).

    Google Scholar 

  10. Khush, G. S. Modern varieties — their real contribution to food supplies and equity. Geo. J. 35, 275–284 (1995).

    Google Scholar 

  11. Khush, G. S. in Tropical Agriculture Research Series No. 20 235–246 (Tropical Agriculture Research Center, Ministry of Agriculture, Forestry and Fisheries, Japan, 1987).

    Google Scholar 

  12. Khush, G. S. Disease and insect resistance in rice. Adv. Agron. 29, 265–341 (1977).

    Article  Google Scholar 

  13. Khush, G. S. in Progress in Irrigated Rice Research 79–92 (International Rice Research Institute, Manila, the Philippines, 1989).

    Google Scholar 

  14. Khush, G. S. in Plant Breeding in the 1990s (eds Stalker, H. T. & Murphy, J. P.) 303–332 (CAB International, Wallingford, UK, 1992).

    Google Scholar 

  15. Bonman, J. M., Khush, G. S. & Nelson, R. J. Breeding rice for resistance to pests. Annu. Rev. Phytopathol. 30, 507–528 (1992).

    Article  Google Scholar 

  16. Palis, F. Changing farmer's perceptions and practices: the case of insect control in Central Luzon, Philippines. Crop Protection 77, 599–607 (1998).

    Article  Google Scholar 

  17. Pingali, P. L. & Rajaram, S. in World Wheat Facts and Trends. Global Wheat Research in a Changing World: Challenges and Achievements (ed. Pingali, P. L.) 1–18 (CIMMYT, Mexico D.F., 2000).

    Google Scholar 

  18. Pingali, P. L. & Pandey, S. in World Maize Facts and Trends. Meeting World Maize Needs: Technological Opportunities and Priorities for the Public Sector (ed. Pingali, P. L.) 1–24 (CIMMYT, Mexico D.F., 2000).

    Google Scholar 

  19. Mackill, D. J., Amante, M. M., Vergara, B. S. & Sarkarung, S. Improved semidwarf rice lines with tolerance to submergence. Crop Sci. 33, 749–753 (1993).

    Article  Google Scholar 

  20. Kohli, M. M. & Rajaram, S. (eds) Wheat Breeding for Acid Soils: Review of Brazilian–CIMMYT Collaboration 1974–1986 (CIMMYT, Mexico D.F., 1988).

    Google Scholar 

  21. Heisey, P. W. & Edmeades, G. O. World Maize Facts and Trends. Maize Production in Drought-Stressed Environments: Technical Options and Research Resource Allocation (CIMMYT, Mexico D.F., 1999).

    Google Scholar 

  22. Kumar, I. & Khush, G. S. Genetics of amylose content in rice (Oryza sativa L.). J. Genet. 65, 1–11 (1986).

    Article  CAS  Google Scholar 

  23. CIMMYT. CIMMYT in 1999–2000. Science and Sustenance (CIMMYT, Mexico D.F., 2000).

  24. Xiao, J. et al. Genes from wild rice improve yield. Nature 384, 223–224 (1996).

    Article  CAS  Google Scholar 

  25. Koziel, M. G. et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11, 194–200 (1993).

    CAS  Google Scholar 

  26. Tu, J. et al. Expression and function of a hybrid Bt toxin gene in the transgenic rice conferring resistance to insect pests. Plant Biotechnol. 15, 183–191 (1998).

    Article  Google Scholar 

  27. James, C. Global Status of Commercialized Transgenic Crops: 2000 ISAAA Briefs No. 21: Preview (ISAAA, Ithaca, New York, 2000).

    Google Scholar 

  28. Huang, N. et al. Pyramiding of bacterial blight resistance in rice: marker aided selection using RFLP and PCR. Theor. Appl. Genet. 95, 313–320 (1997).

    Article  CAS  Google Scholar 

  29. Tarczynski, M. C., Jensen, R. G. & Bohnert, H. J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259, 508–510 (1993).

    Article  CAS  Google Scholar 

  30. Arumuganathan, K. & Earl, E. D. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218 (1991).

    Article  CAS  Google Scholar 

  31. Meissner, R. C. et al. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertion mutations in R2R3 MYB genes. Plant Cell 11, 1827–1840 (1999).

    Article  CAS  Google Scholar 

  32. Leach, J. E., Leung, H. & Wang, W. L. in Rice Biotechnology: Improving Yield, Stress Tolerance and Grain Quality (ed. Goode, J.) 190–204 (Novartis Foundation Symposium 236, Wiley, Chichester, UK, 2001).

    Google Scholar 

  33. Khush, G. S. & Leung, H. in New Frontiers of Science and Technology. Proceedings of the International Conference on Science Frontiers Tsukuba 999, November 17–19, 1999 at Tsukuba Center, Japan (ed. Esaki, L.) 15–27 (Universal Academy Press, Inc., Tokyo, Japan, 1999).

    Google Scholar 

  34. Davos, K. M. & Gale, M. D. Comparative genetics in the grasses. Plant Mol. Biol. 35, 3–15 (1997).

    Article  Google Scholar 

  35. Fischer, K. S., Barton, J., Khush, G. S., Leung, H. & Cantrell, R. Collaborations in rice. Science 290, 279–280 (2000).

    Article  CAS  Google Scholar 

  36. Khush, G. S. Breaking the yield barrier of rice. Geo. J. 35, 329–332 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Related links

Related links














Food and Agriculture Organization

Future Harvest (a charitable and educational organization)

Gurdev Khush's website

International Maize and Wheat Improvement Center

International rice functional genomics working group

International Rice Research Institute

Rice bioinformatics

Rice Genome Research Program

Rice Insertion Mutant Database



Term used by breeders to refer to the collection of varieties and breeding lines.


Ratio of dry grain weight to total dry matter.


A locally adapted strain of a species selected and adapted by farmers.


The collapse of top-heavy plants, particularly grain crops.


The terminal shoot of a rice plant that produces grain.


Those that do not flower unless exposed to a day-length that is longer or shorter than a crucial period (in this case, plants that flower only during the short day-length of about 8 hours).


Production of shoots from the lower part of the plant.


Non-reproductive phase of the life cycle of a plant.


A measure of consistency or reliability of performance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khush, G. Green revolution: the way forward. Nat Rev Genet 2, 815–822 (2001).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing