How the olfactory system makes sense of scents

Abstract

The human nose is often considered something of a luxury, but in the rest of the animal world, from bacteria to mammals, detecting chemicals in the environment has been critical to the successful organism. An indication of the importance of olfactory systems is the significant proportion — as much as 4% — of the genomes of many higher eukaryotes that is devoted to encoding the proteins of smell. Growing interest in the detection of diverse compounds at single-molecule levels has made the olfactory system an important system for biological modelling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Functional anatomy and structure of the early olfactory system.
Figure 2: Odorant receptors are the jewel of olfactory research in the past 10 years.
Figure 3: Sensory transduction.

References

  1. 1

    Hildebrand, J. G. & Shepherd, G. M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595–631 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Buck, L. B. The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611–618 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Mombaerts, P. Seven-transmembrane proteins as odorant and chemosensory receptors. Science 286, 707–711 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    CAS  Article  Google Scholar 

  5. 5

    Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    CAS  Article  Google Scholar 

  6. 6

    Sosinsky, A., Glusman, G. & Lancet, D. The genomic structure of human olfactory receptor genes. Genomics 70, 49–61 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Pilpel, Y. & Lancet, D. The variable and conserved interfaces of modeled olfactory receptor proteins. Protein Sci. 8, 969–977 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Kobilka, B. K. et al. Chimeric α2-,β2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 240, 1310–1316 (1988).

    CAS  Article  ADS  Google Scholar 

  9. 9

    Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    CAS  Article  ADS  Google Scholar 

  10. 10

    Krautwurst, D., Yau, K. W. & Reed, R. R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95, 917–926 (1998).

    CAS  Article  Google Scholar 

  11. 11

    Gimelbrant, A. A., Haley, S. L. & McClintock, T. S. Olfactory receptor trafficking involves conserved regulatory steps. J. Biol. Chem. 1, 1 (2000).

    Google Scholar 

  12. 12

    Zhao, H. et al. Functional expression of a mammalian odorant receptor. Science 279, 237–242 (1998).

    CAS  Article  ADS  Google Scholar 

  13. 13

    Wetzel, C. H. et al. Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus laevis oocytes. J. Neurosci. 19, 7426–7433 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Speca, D. J. et al. Functional identification of a goldfish odorant receptor. Neuron 23, 487–498 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Sengupta, P., Chou, J. H. & Bargmann, C. I. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899–909 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Clyne, P. J. et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327–338 (1999).

    CAS  Article  Google Scholar 

  17. 17

    Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725–736 (1999).

    CAS  Article  Google Scholar 

  18. 18

    Vosshall, L. B., Wong, A. M. & Axel, R. An olfactory sensory map in the fly brain. Cell 102, 147–159 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Firestein, S., Darrow, B. & Shepherd, G. M. Activation of the sensory current in salamander olfactory receptor neurons depends on a G protein-mediated cAMP second messenger system. Neuron 6, 825–835 (1991).

    CAS  Article  Google Scholar 

  20. 20

    Wong, S. T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Belluscio, L., Gold, G. H., Nemes, A. & Axel, R. Mice deficient in Golf are anosmic. Neuron 20, 69–81 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Brunet, L. J., Gold, G. H. & Ngai, J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17, 681–693 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Lynch, J. W. & Barry, P. H. Action potentials initiated by single channels opening in a small neuron (rat olfactory receptor). Biophys J. 55, 755–768 (1989).

    CAS  Article  ADS  Google Scholar 

  24. 24

    Menini, A., Picco, C. & Firestein, S. Quantal-like current fluctuations induced by odorants in olfactory receptor cells. Nature 373, 435–437 (1995).

    CAS  Article  ADS  Google Scholar 

  25. 25

    Kleene, S. J. & Gesteland, R. C. Calcium-activated chloride conductance in frog olfactory cilia. J. Neurosci. 11, 3624–3629 (1991).

    CAS  Article  Google Scholar 

  26. 26

    Lowe, G. & Gold, G. H. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366, 283–286 (1993).

    CAS  Article  ADS  Google Scholar 

  27. 27

    Kurahashi, T. & Yau, K. W. Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363, 71–74 (1993).

    CAS  Article  ADS  Google Scholar 

  28. 28

    Kurahashi, T. & Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385, 725–729 (1997).

    CAS  Article  ADS  Google Scholar 

  29. 29

    Chen, T. Y. & Yau, K. W. Direct modulation by Ca2+-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368, 545–548 (1994).

    CAS  Article  ADS  Google Scholar 

  30. 30

    Liu, M., Chen, T. Y., Ahamed, B., Li, J. & Yau, K. W. Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266, 1348–1354 (1994).

    CAS  Article  ADS  Google Scholar 

  31. 31

    Kramer, R. H. & Siegelbaum, S. A. Intracellular Ca2+ regulates the sensitivity of cyclic nucleotide-gated channels in olfactory receptor neurons. Neuron 9, 897–906 (1992).

    CAS  Article  Google Scholar 

  32. 32

    Firestein, S., Picco, C. & Menini, A. The relation between stimulus and response in olfactory receptor cells of the tiger salamander. J. Physiol. 468, 1–10 (1993).

    CAS  Article  Google Scholar 

  33. 33

    Reisert, J. & Matthews, H. R. Adaptation-induced changes in sensitivity in frog olfactory receptor cells. Chem. Senses 25, 483–486 (2000).

    CAS  Article  Google Scholar 

  34. 34

    Sinnarajah, S. et al. RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase III. Nature 409, 1051–1055 (2001).

    CAS  Article  ADS  Google Scholar 

  35. 35

    Dawson, T. M. et al. Beta-adrenergic receptor kinase-2 and beta-arrestin-2 as mediators of odorant-induced desensitization. Science 259, 825–829 (1993).

    CAS  Article  ADS  Google Scholar 

  36. 36

    Schleicher, S., Boekhoff, I., Arriza, J., Lefkowitz, R. J. & Breer, H. A β-adrenergic receptor kinase-like enzyme is involved in olfactory signal termination. Proc. Natl Acad. Sci. USA 90, 1420–1424 (1993).

    CAS  Article  ADS  Google Scholar 

  37. 37

    Fadool, D. A. & Ache, B. W. Plasma membrane inositol 1,4,5-trisphosphate-activated channels mediate signal transduction in lobster olfactory receptor neurons. Neuron 9, 907–918 (1992).

    CAS  Article  Google Scholar 

  38. 38

    Krieger, J., Mameli, M. & Breer, H. Elements of the olfactory signaling pathways in insect antennae. Invert. Neurosci. 3, 137–144 (1997).

    CAS  Article  Google Scholar 

  39. 39

    Boekhoff, I., Michel, W. C., Breer, H. & Ache, B. W. Single odors differentially stimulate dual second messenger pathways in lobster olfactory receptor cells. J. Neurosci. 14, 3304–3309 (1994).

    CAS  Article  Google Scholar 

  40. 40

    Ache, B. W. & Zhainazarov, A. Dual second-messenger pathways in olfactory transduction. Curr. Opin. Neurobiol. 5, 461–466 (1995).

    CAS  Article  Google Scholar 

  41. 41

    Mori, K. & Yoshihara, Y. Molecular recognition and olfactory processing in the mammalian olfactory system. Prog. Neurobiol. 45, 585–619 (1995).

    CAS  Article  Google Scholar 

  42. 42

    Duchamp-Viret, P., Chaput, M. A. & Duchamp, A. Odor response properties of rat olfactory receptor neurons. Science 284, 2171–2174 (1999).

    CAS  Article  Google Scholar 

  43. 43

    Araneda, R. C., Kini, A. D. & Firestein, S. The molecular receptive range of an odorant receptor. Nature Neurosci. 3, 1248–1255 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Meister, M. & Bonhoeffer, T. Tuning and topography in an odor map on the rat olfactory bulb. J. Neurosci. 21, 1351–1360 (2001).

    CAS  Article  Google Scholar 

  45. 45

    Rubin, B. D. & Katz, L. C. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511 (1999).

    CAS  Article  Google Scholar 

  46. 46

    Uchida, N., Takahashi, Y. K., Tanifuji, M. & Mori, K. Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nature Neurosci. 3, 1035–1043 (2000).

    CAS  Article  Google Scholar 

  47. 47

    Dudai, Y. The smell of representations. Neuron 23, 633–635 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Rubin, B. D. & Katz, L. C. Spatial coding of enantiomers in the rat olfactory bulb. Nature Neurosci. 4, 355–356 (2001).

    CAS  Article  Google Scholar 

  49. 49

    Dulac, C. & Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995).

    CAS  Article  Google Scholar 

  50. 50

    Matsunami, H. & Buck, L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 (1997).

    CAS  Article  Google Scholar 

  51. 51

    Ryba, N. J. & Tirindelli, R. A new multigene family of putative pheromone receptors. Neuron 19, 371–379 (1997).

    CAS  Article  Google Scholar 

  52. 52

    Herrada, G. & Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763–773 (1997).

    CAS  Article  Google Scholar 

  53. 53

    Jia, C. & Halpern, M. Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Giα2 and Goα) and segregated projections to the accessory olfactory bulb. Brain Res. 719, 117–128 (1996).

    CAS  Article  Google Scholar 

  54. 54

    Krieger, J. et al. Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds. J. Biol. Chem. 274, 4655–4662 (1999).

    CAS  Article  Google Scholar 

  55. 55

    Del Punta, K., Rothman, A., Rodriguez, I. & Mombaerts, P. Sequence diversity and genomic organization of vomeronasal receptor genes in the mouse. Genome Res. 10, 1958–1967 (2000).

    CAS  Article  Google Scholar 

  56. 56

    Pantages, E. & Dulac, C. A novel family of candidate pheromone receptors in mammals. Neuron 28, 835–845 (2000).

    CAS  Article  Google Scholar 

  57. 57

    Martini, S., Silvotti, L., Shirazi, A., Ryba, N. J. & Tirindelli, R. Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J. Neurosci. 21, 843–848 (2001).

    CAS  Article  Google Scholar 

  58. 58

    Rodriguez, I., Feinstein, P. & Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97, 199–208 (1999).

    CAS  Article  Google Scholar 

  59. 59

    Belluscio, L., Koentges, G., Axel, R. & Dulac, C. A map of pheromone receptor activation in the mammalian brain. Cell 97, 209–220 (1999).

    CAS  Article  Google Scholar 

  60. 60

    Holy, T. E., Dulac, C. & Meister, M. Responses of vomeronasal neurons to natural stimuli. Science 289, 1569–1572 (2000).

    CAS  Article  ADS  Google Scholar 

  61. 61

    Leinders-Zufall, T. et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405, 792–796 (2000).

    CAS  Article  ADS  Google Scholar 

  62. 62

    Sam, M. et al. Odorants may arouse instinctive behaviours. Nature 412, 142 (2001).

    CAS  Article  ADS  Google Scholar 

  63. 63

    Rodriguez, I., Greer, C. A., Mok, M. Y. & Mombaerts, P. A putative pheromone receptor gene expressed in human olfactory mucosa. Nature Genet. 26, 18–19 (2000).

    CAS  Article  Google Scholar 

  64. 64

    Meredith, M. Human vomeronasal organ function: a critical review of best and worst cases. Chem. Senses 26, 433–445 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Material for figures was provided by X. Zhang and A. Kini. Thoughtful comments were provided by members of my laboratory and D. Kelley.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stuart Firestein.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Firestein, S. How the olfactory system makes sense of scents. Nature 413, 211–218 (2001). https://doi.org/10.1038/35093026

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing