Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line

Abstract

Transposons have been enormously useful for genetic analysis in both Drosophila and bacteria. Mutagenic insertions constitute molecular tags that are used to rapidly clone the mutated gene. Such techniques would be especially advantageous in the nematode Caenorhabditis elegans, as the entire sequence of the genome has been determined. Several different types of endogenous transposons are present in C. elegans, and these can be mobilized in mutator strains (reviewed in ref. 1). Unfortunately, use of these native transposons for regulated transposition in C. elegans is limited. First, all strains contain multiple copies of these transposons and thus new insertions do not provide unique tags. Second, mutator strains tend to activate the transposition of several classes of transposons, so that the type of transposon associated with a particular mutation is not known. Here we demonstrate that the Drosophila mariner element Mos1 can be mobilized in C. elegans. First, efficient mobilization of Mos1 is possible in somatic cells. Second, heritable insertions of the transposon can be generated in the germ line. Third, genes that have been mutated by insertion can be rapidly identified using inverse polymerase chain reaction. Fourth, these insertions can subsequently be remobilized to generate deletion and frameshift mutations by imperfect excision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mobilization of Mos1 in C. elegans somatic cells.
Figure 2: Germline mobilization of Mos1.
Figure 3: Mos1 genomic insertions.

Similar content being viewed by others

References

  1. Plasterk, R. H. A. & van Luenen, H. G. A. M. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 97–116 (Cold Spring Harbor Laboratory, New York, 1997).

    Google Scholar 

  2. Jacobson, J. W., Medhora, M. M. & Hartl, D. L. Molecular structure of a somatically unstable transposable element in Drosophila. Proc. Natl Acad. Sci. USA 83, 8684–8688 (1986).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hartl, D. L., Lohe, A. R. & Lozovskaya, E. R. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu. Rev. Genet. 31, 337–358 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Plasterk, R. H., Izsvak, Z. & Ivics, Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Tosi, L. R. & Beverley, S. M. cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res. 28, 784–790 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gueiros-Filho, F. J. & Beverley, S. M. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science 276, 1716–1719 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Coates, C. J., Jasinskiene, N., Miyashiro, L. & James, A. A. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl Acad. Sci. USA 95, 3748–3751 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Luenen, H. G., Colloms, S. D. & Plasterk, R. H. Mobilization of quiet, endogenous Tc3 transposons of Caenorhabditis elegans by forced expression of Tc3 transposase. EMBO J. 12, 2513–2520 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gruidl, M. E. et al. Multiple potential germ-line helicases are components of the germ-line- specific P granules of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 13837–13842 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lohe, A. R., Timmons, C., Beerman, I., Lozovskaya, E. R. & Hartl, D. L. Self-inflicted wounds, template-directed gap repair and a recombination hotspot. Effects of the mariner transposase. Genetics 154, 647–656 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. van Luenen, H. G., Colloms, S. D. & Plasterk, R. H. The mechanism of transposition of Tc3 in C. elegans. Cell 79, 293–301 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

    Article  ADS  Google Scholar 

  13. Sulston, J. E. & Brenner, S. The DNA of Caenorhabditis elegans. Genetics 77, 95–104 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Waterston, R. H., Sulston, J. E. & Coulson, A. R. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 23–45 (Cold Spring Harbor Laboratory, New York, 1997).

    Google Scholar 

  15. Bryan, G., Garza, D. & Hartl, D. Insertion and excision of the transposable element mariner in Drosophila. Genetics 125, 103–114 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sedensky, M. M., Hudson, S. J., Everson, B. & Morgan, P. G. Identification of a mariner-like repetitive sequence in C. elegans. Nucleic Acids Res. 22, 1719–1723 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Robertson, H. M. & Lampe, D. J. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol. Biol. Evol. 12, 850–862 (1995).

    CAS  PubMed  Google Scholar 

  18. Medhora, M., Maruyama, K. & Hartl, D. L. Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics 128, 311–318 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Candido, E. P. et al. Structure, organization, and expression of the 16-kDa heat shock gene family of Caenorhabditis elegans. Genome 31, 690–697 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Clark, S. G., Lu, X. & Horvitz, H. R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137, 987–997 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kramer, J. M., French, R. P., Park, E. C. & Johnson, J. J. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol. Cell. Biol. 10, 2081–2089 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kelly, W. G., Xu, S., Montgomery, M. K. & Fire, A. Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. Genetics 146, 227–238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Williams, B. D., Schrank, B., Huynh, C., Shownkeen, R. & Waterston, R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131, 609–624 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fire, A., Harrison, S. W. & Dixon, D. A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93, 189–198 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Hartl, H. van Leunen, R. Plasterk, S. Beverley and K. Bennett for gifts of DNA constructs, and O. Hobert for unpublished information. We also thank H. Rausch for initial studies using Tc3 and C. Johnston, E. Lyman and M. Miller for screening help. This work was funded by an NSF grant. J.-L.B. was supported by INSERM, EMBO and the Fondation Simone et Cino del Ducca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik M. Jorgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessereau, JL., Wright, A., Williams, D. et al. Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 413, 70–74 (2001). https://doi.org/10.1038/35092567

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35092567

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing