Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamics of travelling waves in visual perception


Nonlinear wave propagation is ubiquitous in nature, appearing in chemical reaction kinetics1, cardiac tissue dynamics1,2, cortical spreading depression3 and slow wave sleep4. The application of dynamical modelling has provided valuable insights into the mechanisms underlying such nonlinear wave phenomena in several domains1,2,5,6. Wave propagation can also be perceived as sweeping waves of visibility that occur when the two eyes view radically different stimuli. Termed binocular rivalry, these fluctuating states of perceptual dominance and suppression are thought to provide a window into the neural dynamics that underlie conscious visual awareness7,8. Here we introduce a technique to measure the speed of rivalry dominance waves propagating around a large, essentially one-dimensional annulus. When mapped onto visual cortex, propagation speed is independent of eccentricity. Propagation speed doubles when waves travel along continuous contours, thus demonstrating effects of collinear facilitation. A neural model with reciprocal inhibition between two layers of units provides a quantitative explanation of dominance wave propagation in terms of disinhibition. Dominance waves provide a new tool for investigating fundamental cortical dynamics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rivalry stimuli and data of propagation times for dominance waves.
Figure 2: Dependence of propagation times on cortical distance.
Figure 3: Neural model for dominance wave propagation.


  1. Winfree, A. T. When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias. (Princeton Univ. Press, New Jersey, 1987).

    Google Scholar 

  2. Nagai, Y., González, H., Shrier, A. & Glass, L. Paroxysmal starting and stopping of circulating waves in excitable media. Phys. Rev. Lett. 84, 4248–4251 (2000).

    Article  CAS  Google Scholar 

  3. Basarsky, T. A., Duffy, S. N., Andrew, R. D. & MacVicar, B. A. Imaging spreading depression and associated intracellular calcium waves in brain slices. J. Neurosci. 18, 7189–7199 (1998).

    Article  CAS  Google Scholar 

  4. Kim, U., Bal, T. & McCormick, D. A. Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. J. Neurophysiol. 74, 1301–1323 (1995).

    Article  CAS  Google Scholar 

  5. Rinzel, J., Terman, D., Wang, X. J. & Ermentrout, B. Propagating activity patterns in large scale inhibitory neuronal networks. Science 279, 1351–1355 (1998).

    Article  CAS  Google Scholar 

  6. Ermentrout, G. B. & Kleinfeld, D. Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron 29, 33–44 (2001).

    Article  CAS  Google Scholar 

  7. Crick, F. & Koch, C. Consciousness and neuroscience. Cerebral Cortex 8, 97–107 (1998).

    Article  CAS  Google Scholar 

  8. Logothetis, N. K. Single units and conscious vision. Phil. Trans. R. Soc. Lond. B 353, 1801–1818 (1998).

    Article  CAS  Google Scholar 

  9. Blake, R., O'Shea, R. P. & Mueller, T. J. Spatial zones of binocular rivalry in central and peripheral vision. Vis. Neurosci. 8, 469–478 (1992).

    Article  CAS  Google Scholar 

  10. Blake, R., Westendorf, D. & Fox, R. Temporal perturbations of binocular rivalry. Percept. Psychophys. 48, 593–602 (1990).

    Article  CAS  Google Scholar 

  11. Walker, P. & Powell, D. J. The sensitivity of binocular rivalry to changes in the nondominant stimulus. Vision Res. 19, 247–249 (1979).

    Article  CAS  Google Scholar 

  12. Malach, R., Amir, Y., Harel, M. & Grinvald, A. Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc. Natl Acad. Sci. USA 90, 10469–10473 (1993).

    Article  CAS  Google Scholar 

  13. Das, A. & Gilbert, C. D. Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375, 780–784 (1995).

    Article  CAS  Google Scholar 

  14. Field, D. J., Hayes, A. & Hess, R. F. Contour integrations by the human visual system: evidence for a local ‘association’ field. Vision Res. 33, 173–193 (1993).

    Article  CAS  Google Scholar 

  15. Kamitani, Y. & Shimojo, S. Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex. Nature Neurosci. 2, 767–771 (1999).

    Article  CAS  Google Scholar 

  16. Alais, D. & Blake, R. Grouping visual features during binocular rivalry. Vision Res. 39, 4341–4353 (1999).

    Article  CAS  Google Scholar 

  17. Horton, J. C. & Hoyt, W. F. The representation of the visual field in human striate cortex: a revision of the classic Holmes map. Arch. Ophthalmol. 109, 816–824 (1991).

    Article  CAS  Google Scholar 

  18. Hitchcock, P. F. & Hickey, T. L. Ocular dominance columns: evidence for their presence in humans. Brain Res. 182, 176–179 (1980).

    Article  CAS  Google Scholar 

  19. McCormick, D. A. & Williamson, A. Convergence and divergence of neurotransmitter action in human cerebral cortex. Proc. Natl Acad. Sci. USA 86, 8098–8102 (1989).

    Article  CAS  Google Scholar 

  20. Wilson, H. R. Spikes, Decisions, and Actions: Dynamical Foundations of Neuroscience. (Oxford Univ. Press, Oxford, 1999).

    MATH  Google Scholar 

  21. Wilson, H. R., Krupa, B. & Wilkinson, F. Dynamics of perceptual oscillations in form vision. Nature Neurosci. 3, 170–176 (2000).

    Article  CAS  Google Scholar 

  22. Somers, D. C. et al. A local circuit approach to understanding integration of long range inputs in primary visual cortex. Cereb. Cort. 8, 204–217 (1998).

    Article  CAS  Google Scholar 

  23. Wolfe, J. M. Influence of spatial frequency, luminance, and duration on binocular rivalry and abnormal fusion of briefly presented dichoptic stimuli. Perception 12, 447–456 (1983).

    Article  CAS  Google Scholar 

  24. Lehky, S. An astable multivibrator model of binocular rivalry. Perception 17, 215–228 (1988).

    Article  CAS  Google Scholar 

  25. Blake, R. A neural theory of binocular rivalry. Psych. Rev. 96, 145–167 (1989).

    Article  CAS  Google Scholar 

  26. Leopold, D. A. & Logothetis, N. K. Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature 379, 549–553 (1996).

    Article  CAS  Google Scholar 

  27. Logothetis, N. K., Leopold, D. A. & Sheinberg, D. L. What is rivalling during binocular rivalry? Nature 380, 621–624 (1996).

    Article  CAS  Google Scholar 

  28. Kovács, I., Papathomas, T. V., Yang, M. & Fehér, A. When the brain changes its mind: interocular grouping during binocular rivalry. Proc. Natl Acad. Sci. USA 93, 15508–15511 (1996).

    Article  Google Scholar 

  29. Polonsky, A., Blake, R., Braun, J. & Heeger, D. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neurosci. 3, 1153–1159 (2000).

    Article  CAS  Google Scholar 

  30. Tong, F., Nakayama, K., Vaughan, J. T. & Kanwisher, N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

    Article  CAS  Google Scholar 

Download references


This research was supported by grants from NSERC (H.R.W.) and NIH (R.B.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hugh R. Wilson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilson, H., Blake, R. & Lee, SH. Dynamics of travelling waves in visual perception. Nature 412, 907–910 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing