Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transition of Mount Etna lavas from a mantle-plume to an island-arc magmatic source

A Corrigendum to this article was published on 11 April 2002


Mount Etna lies near the boundary between two regions that exhibit significantly different types of volcanism. To the north, volcanism in the Aeolian island arc is thought to be related to subduction of the Ionian lithosphere1. On Sicily itself, however, no chemical2,3 or seismological4 evidence of subduction-related volcanism exists, and so it is thought that the volcanism—including that on Mount Etna itself—stems from the upwelling of mantle material5, associated with various surface tectonic processes1,6. But the paucity of geological evidence regarding the primary composition of magma from Mount Etna means that its source characteristics remain controversial. Here we characterize the trace-element composition of a series of lavas emitted by Mount Etna over the past 500 kyr and preserved as melt inclusions inside olivine phenocrysts. We show that the compositional change in primary magmas from Mount Etna reflects a progressive transition from a predominantly mantle-plume source to one with a greater contribution from island-arc (subduction-related) basalts. We suggest that this is associated with southward migration of the Ionian slab, which is becoming juxtaposed with a mantle plume beneath Sicily. This implies that the volcanism of Mount Etna has become more calc-alkaline, and hence more explosive, during its evolution.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sketch map of islands in the southern Tyrrhenian Sea and sample locations on Mount Etna.
Figure 2: Trace-element diagrams.
Figure 3: Plots of various ratios involving highly incompatible elements.


  1. Barberi, F., Gasparini, P., Innocenti, F. & Villari, L. Volcanism of the southern Tyrrhenian Sea and its geodynamic implications. J. Geophys. Res. 78, 5221–5232 (1974).

    Article  Google Scholar 

  2. Bianchini, G., Clocchiatti, R., Coltorti, M., Joron, J. L. & Vaccaro, C. Petrogenesis of mafic lavas from the northernmost sector of the Iblean district (Sicily). Eur. J. Mineral. 10, 301–315 (1998).

    Article  CAS  Google Scholar 

  3. Tanguy, J. C. Tholeiitic basalt magmatism of Mount Etna and its relations with the alkaline series. Contrib. Mineral. Petrol. 66, 51–67 (1978).

    Article  CAS  Google Scholar 

  4. Anderson, H. & Jackson, J. The deep seismicity of the Tyrrhenian Sea. Geophys. J. R. Astron. Soc. 91, 613–637 (1987).

    Article  Google Scholar 

  5. Tanguy, J. C., Condomines, M. & Kieffer, G. Evolution of the Mount Etna magma: Constraints on the present feeding system and eruptive mechanism. J. Volcanol. Geotherm. Res. 75, 221–250 (1997).

    Article  CAS  Google Scholar 

  6. Gvirtzman, Z. & Nur, A. The formation of Mount Etna as the consequence of slab rollback. Nature 401, 782–785 (1999).

    Article  CAS  Google Scholar 

  7. Keller, J. Petrology of some volcanic rock series of the Aeolian Arc, Southern Tyrrhenian Sea: Calc-alkaline and shoshonitic associations. Contrib. Mineral. Petrol. 45, 29–47 (1974).

    Article  Google Scholar 

  8. Gillot, P. Y., Kieffer, G. & Romano, R. The evolution of Mount Etna in the light of potassium-argon dating. Acta Vulcanol. 5, 81–87 (1994).

    Google Scholar 

  9. Busà, T., Clocchiatti, R. & Cristofolini, R. Low P and high P alkaline magmas from Mt Etna: their origin and evolution from the study of mineralogy and chemistry of lavas and of olivine-trapped inclusions. Periodico Mineralogia 68, 163–183 (1999).

    Google Scholar 

  10. Condomines, M., Tanguy, J. C. & Michaud, V. Magma dynamics at Mt Etna: Constraints from U-Th-Ra-Pb radioactive disequilibria and Sr isotopes in historical lavas. Earth Planet. Sci. Lett. 132, 25–41 (1995).

    Article  CAS  Google Scholar 

  11. La Delfa, S., Patanè, G., Clocchiatti, R., Joron, J. L. & Tanguy, J. C. Activity of Mount Etna preceding the February 1999 fissure eruption: inferred mechanism from seismological and geochemical data. J. Volcanol. Geotherm. Res. 105, 121–139 (2001).

    Article  Google Scholar 

  12. Trua, T. Evoluzione del magmatismo ibleo (Sicilia sud orientale) dal Cretaceo al Plio-Pleistocene. Thesis, Univ. Pisa (1997).

    Google Scholar 

  13. Gioncada, A. et al. A study of melt inclusions at Vulcano (Aeolian Islands, Italy): insights on the primitive magmas and on the volcanic feeding system. Bull. Volcanol. 60, 286–306 (1998).

    Article  Google Scholar 

  14. Weaver, B. L. The origin of ocean-island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381–397 (1991).

    Article  CAS  Google Scholar 

  15. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  CAS  Google Scholar 

  16. Albarede, F. et al. OIB-type magmas in subduction zones: mantle counterflow above detaching plates. Eos 81, 1271 (2000).

    Google Scholar 

  17. Ferrari, L. & Manetti, P. Geodynamic framework of the Tyrrhenian volcanism: a review. Acta Vulcanol. 3, 1–19 (1993).

    Google Scholar 

  18. Feigenson, M. D., Hofmann, A. W. & Spera, F. J. Case studies on the origin of basalt. II. The transition from tholeiitic to alkalic volcanism on Kohala volcano, Hawaii. Contrib. Mineral. Petrol. 84, 390–405 (1983).

    Article  CAS  Google Scholar 

  19. Wendt, J. L., Regelous, M., Collerson, K. D. & Ewart, A. Evidence for a contribution from two mantle plumes to island-arc lavas from northern Tonga. Geology 25, 611–614 (1997).

    Article  CAS  Google Scholar 

  20. Turner, S. & Hawkesworth, C. Using geochemistry to map mantle flow beneath the Lau Basin. Geology 26, 1019–1022 (1998).

    Article  CAS  Google Scholar 

  21. Morris, J. D. & Hart, S. R. Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure. Geochim. Cosmochim. Acta 47, 2015–2030 (1983).

    Article  CAS  Google Scholar 

  22. Tanguy, J. C., Kieffer, G. & Patanè, G. Dynamics, lava volume and effusion rate during the 1991–1993 eruption of Mount Etna. J. Volcanol. Geotherm. Res. 71, 259–265 (1996).

    Article  CAS  Google Scholar 

  23. Joron, J. L. & Treuil, M. Etude géochimique et pétrogénèse de laves de l'Etna, Sicile, Italie. Bull. Volcanol. 47, 1125–1144 (1984).

    Article  Google Scholar 

  24. Metrich, N. & Clocchiatti, R. Sulfur abundance and its speciation in oxidized alkaline melts. Geochim. Cosmochim. Acta 60, 4151–4160 (1996).

    Article  CAS  Google Scholar 

  25. Lanzafame, G. & Bousquet, J. C. The Maltese escarpment and its extension from Mt. Etna to the Aeolian Islands (Sicily): importance and evolution of a lithosphere discontinuity. Acta Vulcanol. 9, 113–120 (1997).

    Google Scholar 

  26. Coltelli, M., Del Carlo, P. & Vezzoli, L. Discovery of a Plinian basaltic eruption of Roman age at Etna Volcano, Italy. Geology 26, 1095–1098 (1998).

    Article  CAS  Google Scholar 

  27. Bottazzi, P., Ottolini, L., Vannucci, R. & Zanetti, A. in Secondary Ion Mass Spectrometry SIMS IX (eds Beninghoven, A., Nikei, Y., Shimizu, R. & Werner, H. W.) 927–930 (Wiley & Sons, Chichester, 1994).

    Google Scholar 

  28. Schiano, P., Allègre, C. J., Dupré, B., Lewin, E. & Joron, J. L. Variability of trace elements in basaltic suites. Earth Planet. Sci. Lett. 119, 37–51 (1993).

    Article  CAS  Google Scholar 

  29. Hofmann, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  CAS  Google Scholar 

  30. Allègre, C. J., Schiano, P. & Lewin, E. Differences between oceanic basalts by multitrace element ratio topology. Earth Planet. Sci. Lett. 129, 1–12 (1995).

    Article  Google Scholar 

Download references


We thank J. C. Tanguy, A. Borgia, O. Sigmarsson, R. Cristofolini and B. Van Wyk de Vries for discussions, A. Kent for comments on the manuscript, and the Consiglio Nazionale delle Ricerche (Italy) for funding the ion microprobe that we used at CSCC (Pavia).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pierre Schiano.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schiano, P., Clocchiatti, R., Ottolini, L. et al. Transition of Mount Etna lavas from a mantle-plume to an island-arc magmatic source. Nature 412, 900–904 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing