Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism for the destruction of H3+ ions by electron impact

Abstract

The rate at which the simplest triatomic ion (H3+) dissociates following recombination with a low-energy electron has been measured in numerous experiments1,2,3,4,5,6,7,8,9,10. This process is particularly important for understanding observations of H3+ in diffuse interstellar clouds11,12,13. But, despite extensive efforts14,15, no theoretical treatment has yet proved capable of predicting the measured dissociative recombination rates at low energy, even to within an order of magnitude. Here we show that the Jahn–Teller symmetry-distortion effect16,17,18,19—almost universally neglected in the theoretical description of electron–molecule collisions—generates recombination at a much faster rate than any other known mechanism. Our estimated rate constant overlaps the range of values spanned by experiments. We treat the low-energy collision process as a curve-crossing problem, which was previously thought inapplicable20 to low-energy recombination in H3+. Our calculation reproduces the measured propensity for three-body versus two-body breakup of the neutral fragments3, as well as the vibrational distribution4 of the H2 product molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The first 200 adiabatic potential curves of H3+ in hyperspherical coordinates.
Figure 2: Schematic picture of the hyperspherical representation of the dissociative recombination process.
Figure 3: Comparison of experimental and theoretical cross-sections.

Similar content being viewed by others

References

  1. Larsson, M. Experimental studies of the dissociative recombination of H3+. Phil. Trans. R. Soc. Lond. A 358, 2433–2443 (2000).

    Article  CAS  Google Scholar 

  2. Larsson, M. et al. Direct high-energy neutral-channel dissociative recombination of cold H3+ in an ion storage ring. Phys. Rev. Lett. 70, 430–433 (1993).

    Article  CAS  Google Scholar 

  3. Datz, S. et al. Branching-processes in the dissociative recombination of H3+. Phys. Rev. Lett. 74, 896–899 (1995).

    Article  CAS  Google Scholar 

  4. Strasser, D. et al. Two- and three-body kinematical correlation in the dissociative recombination of H3+. Phys. Rev. Lett. 86, 779–782 (2001).

    Article  CAS  Google Scholar 

  5. Sundström, G. et al. Destruction rate of H3+ by low-energy electrons measured in a storage-ring experiment. Science 263, 785–787 (1994).

    Article  Google Scholar 

  6. Tanabe, T. et al. in Dissociative Recombination: Theory, Experiment and Applications Vol. IV (eds Larsson, M. Mitchell, J. B. A. & Schneider, I. F.) 170–179 (World Scientific, Singapore, 2000).

    Google Scholar 

  7. Jensen, M. J. et al. Dissociative recombination and excitation of H3+. Phys. Rev. A 63, 052701-1–052701-5 (2001).

    Google Scholar 

  8. Laubé, S. et al. New FALP-MS measurements of H3+, D+3 and HCO+ dissociative recombination. J. Phys. B 31, 2111–2128 (1998).

    Article  Google Scholar 

  9. Glosík, J., Plasil, R., Poterya, V., Kurdna, P. & Tichý, M. The recombination of H3+ ions with electrons: dependence on partial pressure of H2. Chem. Phys. Lett. 331, 209–214 (2000).

    Article  Google Scholar 

  10. Amano, T. The dissociative recombination rate coefficients of H3+, D+3, and HCO+. J. Chem. Phys. 92, 6492–6501 (1990).

    Article  CAS  Google Scholar 

  11. McCall, B. J., Geballe, T. R., Hinkle, K. H. & Oka, T. Detection of H3+ in the diffuse interstellar medium toward Cygnus OB2 No. 12. Science 279, 1910–1913 (1998).

    Article  CAS  Google Scholar 

  12. Oka, T. Astronomy, physics and chemistry of H3+—Introductory remarks. Phil. Trans. R. Soc. Lond. A 358, 2363–2369 (2000).

    Article  CAS  Google Scholar 

  13. Geballe, T. R. H3+ between the stars. Phil. Trans. R. Soc. Lond. A 358, 2503–2512 (2000).

    Article  CAS  Google Scholar 

  14. Schneider, I. F., Orel, A. E. & Suzor-Weiner, A. Channel mixing effects in the dissociative recombination of H3+ with slow electrons. Phys. Rev. Lett. 85, 3785–3788 (2000).

    Article  CAS  Google Scholar 

  15. Orel, A. E., Schneider, I. F. & Suzor-Weiner, A. Dissociative recombination of H3+: progress in theory. Phil. Trans. R. Soc. Lond. A 358, 3293–3293 (2000).

    Article  CAS  Google Scholar 

  16. Staib, A. & Domcke, W. Analysis of the Jahn–Teller effect in the np2E′ Rydberg series of H3 and D3. Z. Phys. D 16, 275–282 (1990).

    Article  CAS  Google Scholar 

  17. Bordas, M. C., Lembo, L. J. & Helm, H. Spectroscopy and multichannel quantum-defect theory analysis of the np Rydberg series of H3. Phys. Rev. A 44, 1817–1827 (1991).

    Article  CAS  Google Scholar 

  18. Stephens, J. A. & Greene, C. H. Quantum-defect description of H3 Rydberg state dynamics. Phys. Rev. Lett. 72, 1624–1627 (1994).

    Article  CAS  Google Scholar 

  19. Stephens, J. A. & Greene, C. H. Quantum-defect description of H3 and the Jahn–Teller effect. J. Chem. Phys. 102, 1579–1591 (1995).

    Article  CAS  Google Scholar 

  20. Bates, D. R. Dissociative recombination when potential energy curves do not cross. J. Phys. B 25, 5479–5488 (1992).

    Article  CAS  Google Scholar 

  21. Cecchi-Pestellini, C. & Dalgarno, A. H3+ in diffuse interstellar gas. Mon. Not. R. Astron. Soc. 313, L6–L8 (2000).

    Article  CAS  Google Scholar 

  22. Jaquet, R., Cencek, W., Kutzelnigg, W. & Rychlewski, J. Sub-microhartree accuracy potential energy surface for H3+ including adiabatic and relativistic effects II. Rovibrational analysis for H3+ and D3+. J. Chem. Phys. 108, 2837–2846 (1998).

    Article  CAS  Google Scholar 

  23. Esry, B. D., Lin, C. D. & Greene, C. H. Adiabatic hyperspherical study of the helium trimer. Phys. Rev. A 54, 394–401 (1996).

    Article  CAS  Google Scholar 

  24. Lin, C. D. Hyperspherical coordinate approach to atomic and other coulombic 3-body systems. Phys. Rep. 257, 2–83 (1995).

    Article  Google Scholar 

  25. Zhou, Y., Lin, C. D. & Shertzer, J. Hyperspherical approach to coulombic 3-body systems with different masses. J. Phys. B 26, 3937–3949 (1993).

    Article  CAS  Google Scholar 

  26. Greene, C. H. & Jungen, Ch. Molecular applications of quantum defect theory. Adv. At. Mol. Phys. 21, 51–121 (1985).

    Article  CAS  Google Scholar 

  27. Jungen, Ch. Molecular Applications of Quantum Defect Theory (Institute of Physics, Bristol, 1996).

    MATH  Google Scholar 

  28. Mistrík, I. et al. Ab initio analysis of autoionization of H3 molecules using multichannel quantum-defect theory and new quantum-defect surfaces. Phys. Rev. A 61, 033410-1–033410-16 (2000).

    Article  Google Scholar 

  29. O'Malley, T. F. Theory of dissociative attachment. Phys. Rev. 150, 14–29 (1966).

    Article  CAS  Google Scholar 

  30. Giusti, A. A multichannel quantum defect approach to dissociative recombination. J. Phys. B 13, 3867–1894 (1980).

    Article  CAS  Google Scholar 

  31. Orel, A. E. & Kulander, K. C. Resonant dissociative recombination of H3+. Phys. Rev. Lett. 71, 4315–4318 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. A. Stephens, A. E. Orel and A. Suzor-Weiner for discussions, and M. Larsson, G. Dunn, S. Datz, T. Oka and A. Dalgarno for comments on the experimental and astrophysical issues. Computational work was carried out at the National Energy Research Supercomputer Center at Lawrence Berkeley National Laboratory. This work was supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris H. Greene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokoouline, V., Greene, C. & Esry, B. Mechanism for the destruction of H3+ ions by electron impact. Nature 412, 891–894 (2001). https://doi.org/10.1038/35091025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35091025

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing