Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intensified deep Pacific inflow and ventilation in Pleistocene glacial times

Abstract

The production of cold, deep waters in the Southern Ocean is an important factor in the Earth's heat budget1. The supply of deep water to the Pacific Ocean is presently dominated by a single source, the deep western boundary current east of New Zealand. Here we use sediment records deposited under the influence of this deep western boundary current to reconstruct deep-water properties and speed changes during the Pleistocene epoch. In physical and isotope proxies we find evidence for intensified deep Pacific Ocean inflow and ventilation during the glacial periods of the past 1.2 million years. The changes in throughflow may be directly related to an increased production of Antarctic Bottom Water during glacial times. Possible causes for such an increased bottom-water production include increasing wind strengths in the Southern Ocean or an increase in annual sea-ice formation, leaving dense water after brine rejection and thereby enhancing deep convection. We infer also that the global thermohaline circulation was perturbed significantly during the mid-Pleistocene climate transition between 0.86 and 0.45 million years ago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of study area.
Figure 2: Summary of Site 1123 data.
Figure 3: Summary of Pacific ventilation indicators.

Similar content being viewed by others

References

  1. Clarke, A., Church, J. & Gould, J. in Ocean Circulation and Climate—Observing and Modelling the Global Ocean (eds Siedler, G. et al.) 11–30 (Academic, San Diego, 2001).

    Book  Google Scholar 

  2. Raymo, M. E., Oppo, D. W. & Curry, W. The mid-Pleistocene climate transition: A deep sea carbon isotopic perspective. Paleoceanography 12, 546–559 (1997).

    Article  ADS  Google Scholar 

  3. McCave, I. N., Manighetti, B. & Beveridge, N. A. S. Circulation of the glacial North Atlantic inferred from grain-size measurements. Nature 374, 149–151 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Shipboard Scientific Party. Site 1123: North Chatham Drift— a 20 Ma record of the Pacific Deep Western Boundary Current. Proc. ODP Init. Rep. [CD-ROM] Leg 181, 1–184 (1999).

  5. Warren, B. A. Transpacific hydrographic sections at lats. 43°S and 28°S: The SCORPIO Expedition—II Deep water. Deep-Sea Res. 20, 9–38 (1973).

    ADS  Google Scholar 

  6. Imbrie, J. & Imbrie, J. Z. Modeling the climatic response to orbital variations. Science 207, 943–953 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Berger, A. & Loutre, M. F. Insolation values for climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    Article  ADS  Google Scholar 

  8. Bassinot, F. C. et al. The astronomical theory of climate and the age of the Bruhnes-Matuyama magnetic reversal. Earth Planet. Sci. Lett. 126, 91–108 (1994).

    Article  ADS  Google Scholar 

  9. McCave, I. N., Manighetti, B. & Robinson, S. G. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 10, 593–610 (1995).

    Article  ADS  Google Scholar 

  10. Carter, L. & Wilkin, J. Abyssal circulation around New Zealand—a comparison between observations and a global circulation model. Mar. Geol. 159, 221–239 (1999).

    Article  ADS  Google Scholar 

  11. Hall, I. R., McCave, I. N., Chapman, M. R. & Shackleton, N. J. Coherent deep flow variation in the Iceland and American basins during the last interglacial. Earth Planet. Sci. Lett. 164, 15–21 (1998).

    Article  ADS  CAS  Google Scholar 

  12. McCave, I. N. & Carter, L. Recent sedimentation beneath the Deep Western Boundary Current off Northern New Zealand. Deep-Sea Res. 44, 1203–1237 (1997).

    Article  CAS  Google Scholar 

  13. Marcantonio, F. et al. Sediment focusing in the central equatorial Pacific Ocean. Paleoceanography 16, 260–267 (2001).

    Article  ADS  Google Scholar 

  14. Jansen, J. H. F., Kuijpers, A. & Troelstra, S. R. A mid-Brunhes climatic event—long-term changes in global atmosphere and ocean circulation. Science 232, 619–622 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Mackensen, A. et al. The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Southern Ocean deep water: Implications for glacial ocean circulation models. Paleoceanography 8, 587–610 (1993).

    Article  ADS  Google Scholar 

  16. Lean, C. M. B. & McCave, I. N. Glacial to interglacial mineral magnetic and palaeoceanographic changes at Chatham Rise, SW Pacific Ocean. Earth Planet. Sci. Lett. 163, 247–260 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Dymond, J., Suess, E. & Lyle, M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography 7, 163–182 (1992).

    Article  ADS  Google Scholar 

  18. Mix, A. C. et al. Benthic foraminifer stable isotope record from Site 849 (0-5 Ma): Local and global climate changes. Proc. ODP Sci. Res. 138, 371–412 (1995).

    Google Scholar 

  19. Kroopnick, P. M. The distribution of 13C of ΣCO2 in the world oceans. Deep-Sea Res. 32, 57–84 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Kroopnick, P. M. The dissolved O2-CO2-13C system in the eastern equatorial Pacific. Deep-Sea Res. 21, 211–227 (1974).

    ADS  CAS  Google Scholar 

  21. Charles, C. D. & Fairbanks, R. G. Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate. Nature 355, 416–419 (1992).

    Article  ADS  Google Scholar 

  22. Yu, E.-F., Francois, R. & Bacon, M. P. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379, 689–694 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Adkins, J. F. & Boyle, E. A. Changing atmospheric Δ14C and the record of deep water paleoventilation ages. Paleoceanography 12, 337–344 (1997).

    Article  ADS  Google Scholar 

  24. Sikes, E. L. et al. Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405, 555–559 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Bard, E. et al. The North-Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth Planet. Sci. Lett. 126, 275–287 (1994).

    Article  ADS  Google Scholar 

  26. Toggweiler, J. R. & Samuels, B. in The Global Carbon Cycle (ed. Heimann, H.) 333–366 (Springer, Berlin, 1993).

    Book  Google Scholar 

  27. Rahmstorf, S. & England, M. H. Influence of southern hemisphere winds on North Atlantic Deep Water flow. J. Phys. Oceanogr. 27, 2040–2054 (1997).

    Article  ADS  Google Scholar 

  28. Carter, L., Carter, R. M., McCave, I. N. & Gamble, J. Regional sediment recycling in the abyssal S.W. Pacific Ocean. Geology 24, 735–738 (1996).

    Article  ADS  Google Scholar 

  29. Bianchi, G. G., Hall, I. R., McCave, I. N. & Joseph, L. Measurement of the sortable silt current speed proxy using the Sedigraph 5100 and Coulter Multisizer IIe: precision and accuracy. Sedimentology 46, 1001–1014 (1999).

    Article  ADS  Google Scholar 

  30. Pardo-Igúzquiza, E., Chica-Olmo, M. & Rodriguez-Tovar, J. CYSTRATI: a computer program for spectral analysis of stratigraphic successions. Comput. Geosci. 20, 511–584 (1994).

    Article  ADS  Google Scholar 

  31. Mann, M. E. & Lees, J. Robust estimation of background noise and signal detection in climatic time series. Clim. Change 33, 409–445 (1996).

    Article  ADS  Google Scholar 

  32. Bloomfield, P. Fourier Analysis of Time Series: an Introduction (Wiley, London, 1976).

    MATH  Google Scholar 

Download references

Acknowledgements

We thank A. Fulop, M. Hall, L. Tiegang, P. Knutz and N. Walsh for experimental assistance, and the captain, crew and shipboard scientific party of Leg 181 for their help. Samples were provided by the Ocean Drilling Program (ODP), with the support of the Natural Environment Research Council and the UK ODP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Hall.

Supplementary information

Table 1. Results of Cross-Spectral Analysis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, I., McCave, I., Shackleton, N. et al. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times. Nature 412, 809–812 (2001). https://doi.org/10.1038/35090552

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35090552

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing