Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient silicon light-emitting diodes


Considerable effort is being expended on the development of efficient silicon light-emitting devices compatible with silicon-based integrated circuit technology1. Although several approaches are being explored1,2,3,4,5,6, all presently suffer from low emission efficiencies, with values in the 0.01–0.1% range regarded as high2. Here we report a large increase in silicon light-emitting diode power conversion efficiency to values above 1% near room temperature—close to the values of representative direct bandgap emitters of a little more than a decade ago7,8. Our devices are based on normally weak one- and two-phonon assisted sub-bandgap light-emission processes. Their design takes advantage of the reciprocity between light absorption and emission by maximizing absorption at relevant sub-bandgap wavelengths while reducing the scope for parasitic non-radiative recombination within the diode. Each feature individually is shown to improve the emission efficiency by a factor of ten, which accounts for the improvement by a factor of one hundred on the efficiency of baseline devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Electroluminescence spectra for various silicon diodes and temperatures.
Figure 3: External quantum efficiency and power conversion efficiency.

Similar content being viewed by others


  1. Bell, P. Let there be light. Nature 409, 974–976 (2001).

    Article  ADS  Google Scholar 

  2. Ng, W. L. et al. An efficient room-temperature silicon-based light-emitting diode. Nature 410, 192–194 (2001).

    Article  ADS  Google Scholar 

  3. Vescan, L. & Stoica, T. Room-temperature SiGe light-emitting diodes. J. Luminescence 80, 485–489 (1999).

    Article  ADS  Google Scholar 

  4. Leong, D., Harry, M., Reeson, K. J. & Homewood, K. P. A silicon/iron disilicide light-emitting diode operating at a wavelength of 1.5 µm. Nature 387, 686–688 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Hirschman, K. D., Tybekov, L., Duttagupta, S. P. & Fauchet, P. M. Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384, 338–341 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Zheng, B. et al. Room-temperature sharp line electroluminescence at λ = 1.54 µm from an erbium-doped, silicon light-emitting diode. Appl. Phys. Lett. 64, 2842–2844 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Schnitzer, I., Yablonovitch, E., Caneau, C. & Gmitter, T. J. Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures. Appl. Phys. Lett. 62, 131–133 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Meyer, M. “Craford's Law” and the evolution of the LED industry. Compound Semicond. 6(2), 26–30 (2000).

    Google Scholar 

  9. Planck, M. The Theory of Heat Radiation (Dover, New York, 1959); translation of Vorlesungen über die Theorie der Wärmestrahlung (Leipzig, Barth, 1913).

    MATH  Google Scholar 

  10. Kirchhoff, G. R. Über das Verhältnis zwischen Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann. D. Phys. 109, 275–301 (1860) (in German).

    Article  ADS  Google Scholar 

  11. Würfel, P. The chemical potential of radiation. J. Phys. C 15, 3967–3985 (1982).

    Article  ADS  Google Scholar 

  12. Araujo, G. L. & Marti, A. Absolute limiting efficiencies for photovoltaic energy conversion. Solar Energy Mater. Solar Cells 33, 213–240 (1994).

    Article  Google Scholar 

  13. Würfel, P., Finkbeiner, S. & Daub, E. Generalised Planck's radiation law for luminescence via indirect transitions. Appl. Phys. A 60, 67–70 (1995).

    Article  ADS  Google Scholar 

  14. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  CAS  Google Scholar 

  15. Luque, A. & Marti, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Trupke, T., Daub, E. & Würfel, P. Absorptivity of silicon solar cells obtained from luminescence. Solar Energy Mater. Solar Cells 53, 103–114 (1998).

    Article  CAS  Google Scholar 

  17. Goetzberger, A. Optical confinement in thin Si solar cells by diffuse back reflectors. Conf. Record, 15th IEEE Photovoltaic Specialists Conf. Orlando, 867–870 (IEEE, New York, 1981).

  18. Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 72, 899–907 (1982).

    Article  ADS  Google Scholar 

  19. Campbell, P. & Green, M. A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243–249 (1987).

    Article  ADS  Google Scholar 

  20. Schnitzer, I. & Yablonovitch, E. 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Appl. Phys. Lett. 63, 2174–2176 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Windisch, R. et al. 40% efficient thin-film surface-textured light-emitting diodes by optimisation of natural lithography. IEEE Trans. Electron Dev. 47, 1492–1498 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Green, M. A. & Keevers, M. J. Optical properties of intrinsic silicon at 300K. Prog. Photovoltaics 3, 189–192 (1995).

    Article  CAS  Google Scholar 

  23. Zhao, J., Wang, A. & Green, M. A. 24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates. Solar Energy Mater. Solar Cells 66, 27–36 (2001).

    Article  CAS  Google Scholar 

  24. Schlangenotto, H., Maeder, H. & Gerlach, W. Temperature dependence of the radiative recombination coefficient in silicon. Phys. Status Solidi; (A) Applied Research 21, 357–367 (1974).

    Article  ADS  CAS  Google Scholar 

  25. Wasserrab, Th. Beitrag zur Berechnung der strahlenden Rekombinations-wahrscheinlichkeit B von eigenleitendem Silicium. Z. Naturforsch; Part A 33, 1097–1098 (1978) (in German).

    ADS  Google Scholar 

  26. Ong, T.-C., Terrill, K. W., Tam, S. & Hu, C. Photon generation in forward-biased silicon p–n junctions. IEEE Electron Dev. Lett. 4, 460–462 (1983).

    Article  ADS  Google Scholar 

  27. Kramer, J. et al. Light-emitting devices in industrial CMOS technology. Sensors Actuators A 37–38, 527–533 (1993).

    Article  Google Scholar 

  28. Vouk, M. A. & Lightowlers, E. C. Two-phonon assisted free exciton recombination radiation from intrinsic silicon. J. Phys. C; Solid State Physics 10, 3689–3699 (1977).

    Article  ADS  CAS  Google Scholar 

  29. Neisser, A. Spectral Response Measurements on Silicon Solar Cells in the Range of 1 eV to 5 eV Photon Energy at Different Temperatures. Thesis, Technische Universität Berlin (1998).

    Google Scholar 

  30. Thomas, G. A., Ackerman, D. A., Prucnal, P. R. & Cooper, S. L. Physics in the whirlwind of optical communications. Phys. Today 53(9), 30–36 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Martin A. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, M., Zhao, J., Wang, A. et al. Efficient silicon light-emitting diodes. Nature 412, 805–808 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing