Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition


Modern high-power lasers can generate extreme states of matter that are relevant to astrophysics1, equation-of-state studies2 and fusion energy research3,4. Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state5. These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the ‘spark’) must be heated to temperatures of about 108 K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves4, but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately6,7,8,9,10; however, this ‘fast ignitor’ approach7 also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Ultraviolet images showing the heating of solid targets by relativistic electrons, and a sketch of the set-up used to obtain the images.
Figure 2: The implosion target for efficient heating of the highly compressed plasma, an X-ray image of the implosion, and the density profile of the plasma.
Figure 3: Time-integrated X-ray image of the short-pulse laser heating, and time-resolved X-ray images of the highly compressed plasma heated by the short-pulse laser.
Figure 4: Neutron spectrum from the highly dense plasma heated by the short-pulse laser at the time of maximum compression.


  1. 1

    Remington, B. A., Arnet, D., Drake, R. P. & Takabe, H. Modeling astrophysical phenomena in the laboratory with intense lasers. Science 284, 1488–1493 (1999).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Ichimaru, S. & Kitamura, H. Pycnonuclear reactions in dense astrophysical and fusion plasmas. Phys. Plasmas 6, 2649–2671 (1999).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Nuckolls, J., Wood, L., Thiessen, A. & Zimmerman, G. Laser compression of matter to super-high densities. Nature 239, 139–142 (1972).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Lindl, J., McCrory, R. L. & Campbell, E. M. Progress toward ignition and burn propagation in inertial confinement fusion. Phys. Today 45, 32–40 (1992).

    CAS  Article  Google Scholar 

  5. 5

    Azechi, H. et al. High density compression experiments at ILE, Osaka. Laser Part. Beams 9, 193–207 (1991).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Piriz, A. R. & Sanchez, M. M. Analytical model for the dynamics of fast ignition. Phys. Plasmas 5, 2721–2726 (1998).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  7. 7

    Tabak, M. et al. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626–1634 (1994).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Atzeni, S. Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel. Phys. Plasmas 6, 3316–3326 (1999).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Norreys, P. et al. Experimental studies of the advanced fast ignitor scheme. Phys. Plasmas 7, 3721–3726 (2000).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Kodama, R. et al. Fast ignition research at the institute of laser engineering Osaka University. Phys. Plasmas (in the press).

  11. 11

    Perry, M. D. & Mourrou, G. Terawatt to petawatt subpicosecond lasers. Science 264, 917–924 (1994).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Kruer, W. E. & Estabrook, K. JxB heating by very intense laser light. Phys. Fluids 28, 430–432 (1985).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Brunel, F. Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52–55 (1987).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Lefebvre, E. & Bonnaud, G. Transparency/opacity of a solid target illuminated by an ultrahigh-intensity laser pulse. Phys. Rev. Lett. 74, 2002–2005 (1995).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Malka, G. & Miquel, J. L. Experimental validation of the linear theory of stimulated Raman scattering driven by a 500-fs laser pulse in a preformed underdense plasma. Phys. Rev. Lett. 74, 4655–4658 (1996).

    Google Scholar 

  16. 16

    Pukhov, A. & Meyer-ter-Vehn, J. Laser hole boring into overdense plasma and relativistic electron currents for fast ignition of ICF targets. Phys. Rev. Lett. 79, 2686–2689 (1997).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Key, M. H. et al. Hot electron production and heating by hot electrons in fast ignitor research. Phys. Plasmas 5, 1966–1972 (1998).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Kodama, R. et al. Long-scale jet formation with specularly reflected light in ultraintense laser-plasma interactions. Phys. Rev. Lett. 84, 674–677 (2000).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Santala, M. I. K. et al. Effect of the plasma density scale length on the direction of fast electrons in relativistic laser-solid interactions. Phys. Rev. Lett. 84, 1459–1463 (2000).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Tanaka, K. A. et al. Studies of ultra-intense laser plasma interactions for fast ignition. Phys. Plasmas 7, 2014–2022 (2000).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Wharton, K. B. et al. Experimental measurements of hot electrons generated by ultraintense (>1019W/cm2) laser plasma interactions on solid-density targets. Phys. Rev. Lett. 81, 822–825 (1998).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Kodama, R. et al. Development of a two-dimensional space-resolved high speed sampling camera. Rev. Sci. Instrum. 70, 625–628 (1999).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Davies, J. R., Bell, A. R. & Tatarakis, M. Magnetic focusing and trapping of high-intensity laser generated fast electrons at the rear of solid targets. Phys. Rev. E 59, 6032–6036 (1999).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Tatarakis, M. et al. Plasma formation on the front and rear of plastic targets due to high-intensity laser-generated fast electrons. Phy. Rev. Lett. 81, 999–1002 (1998).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Honda, M., Meyer-ter-Vehn, J. & Pukhov, A. Collective stopping and ion heating in relativistic-electron-beam transport for fast ignition. Phys. Rev. Lett. 85, 2128–2131 (2000).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Kato, Y et al. Fast ignition and related plasma physics issues with high-intensity lasers. Plasma Phys. Control. Fusion 39, 145–151 (1997).

    Article  Google Scholar 

  27. 27

    Duda, B. J., Hemker, R. G., Tzeng, K. C. & Mori, W. B. A long-wavelength hosing instability in laser-plasma interactions. Phys. Rev. Lett. 83, 1978–1981 (1999).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Hain, S., Cornolti, F. & Opower, H. Hydrodynamic models and schemes for fast ignition. Laser Part. Beams 17, 245–263 (1999).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Sunahara, A., Takabe, H & Mima, K. 2D simulation of hydrodynamic instability in ICF stagnation phase. Fusion Eng. Design 44, 163–169 (1999).

    CAS  Article  Google Scholar 

Download references


We thank the mm-Wave Technology Centre at the Rutherford Appleton Laboratory, and the target fabrication, laser operation and data acquisition groups at ILE Osaka University. This work was supported by the Japan Society for the Promotion of Science, and the UK Royal Society.

Author information



Corresponding author

Correspondence to R. Kodama.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kodama, R., Norreys, P., Mima, K. et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798–802 (2001).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing