Neurophysiological mechanisms underlying the understanding and imitation of action


What are the neural bases of action understanding? Although this capacity could merely involve visual analysis of the action, it has been argued that we actually map this visual information onto its motor representation in our nervous system. Here we discuss evidence for the existence of a system, the 'mirror system', that seems to serve this mapping function in primates and humans, and explore its implications for the understanding and imitation of action.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Visual and motor responses of a mirror neuron in area F5.
Figure 2: Visual and motor responses of a mirror neuron in area PF.
Figure 3: Brain activation in frontal and parietal areas during the observation of mouth, hand and foot actions.
Figure 4: Activity of a mirror neuron in F5 in response to action observation in full vision and in hidden conditions.


  1. 1

    Gross, C. G., Rocha-Miranda, C. E. & Bender, D. B. Visual properties of neurons in the inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96–111 (1972).

  2. 2

    Tanaka, K., Saito, H. A., Fukada, Y. & Moriya, M. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J. Neurophysiol. 66, 170–189 (1991).

  3. 3

    Ungerleider, L. G. & Haxby, I. V. “What” and “where” in the human brain. Curr. Opin. Neurobiol. 4, 157–165 (1994).

  4. 4

    Carey, D. P., Perrett, D. I. & Oram, M. W. in Handbook of Neuropsychology: Action and Cognition Vol. 11 (eds Jeannerod, M. & Grafman, J.) 111–130 (Elsevier, Amsterdam, 1997).

  5. 5

    Logothetis, N. Object vision and visual awareness. Curr. Opin. Neurobiol. 8, 536–544 (1998).

  6. 6

    Allison, T., Puce, A. & McCarthy, G. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 4, 267–278 (2000).

  7. 7

    Kanwisher, N. Domain specificity in face perception. Nature Neurosci. 3, 759–763 (2000).

  8. 8

    Merleau-Ponty, M. Phenomenology of Perception (Routledge, London, 1962).

  9. 9

    Gallese, V. The “shared manifold” hypothesis: from mirror neurons to empathy. J. Conscious Stud. 8, 33–50 (2001).

  10. 10

    Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Action recognition in the premotor cortex. Brain 119, 593–609 (1996).

  11. 11

    Rizzolatti, G., Fadiga, L., Fogassi, L. & Gallese, V. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res. 3, 131–141 (1996).

  12. 12

    Rizzolatti, G. et al. Functional organization of inferior area 6 in the macaque monkey: II. Area F5 and the control of distal movements. Exp. Brain Res. 71, 491–507 (1988).

  13. 13

    Murata, A. et al. Object representation in the ventral premotor cortex (area F5) of the monkey. J. Neurophysiol. 78, 2226–2230 (1997).

  14. 14

    Rizzolatti G., Fogassi, L. & Gallese, V. in The Cognitive Neurosciences 2nd edn (ed. Gazzaniga, M. S.) 539–552 (MIT Press, Cambridge, Massachusetts, 2000).

  15. 15

    Perrett, D. I. et al. Frameworks of analysis for the neural representation of animate objects and actions. J. Exp. Biol. 146, 87–113 (1989).

  16. 16

    Perrett, D. I., Mistlin, A. J., Harries, M. H. & Chitty, A. J. in Vision and Action: The Control of Grasping (ed. Goodale, M. A.) 163–342 (Ablex, Norwood, New Jersey, 1990).

  17. 17

    Jellema, T. & Perrett, D. I. in Attention & Performance XIX. Common Mechanisms in Perception and Action (eds Prinz, W. & Hommel, B.) (Oxford Univ. Press, Oxford, in the press).

  18. 18

    Petrides, M. & Pandya, D. N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228, 105–116 (1984).

  19. 19

    Matelli, M., Camarda, R., Glickstein, M. & Rizzolatti, G. Afferent and efferent projections of the inferior area 6 in the macaque monkey. J. Comp. Neurol. 251, 281–298 (1986).

  20. 20

    Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445 (1989).

  21. 21

    Seltzer, B. & Pandya, D. N. Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J. Comp. Neurol. 15, 445–463 (1994).

  22. 22

    Rizzolatti, G., Luppino, G. & Matelli, M. The organization of the cortical motor system: new concepts. Electroencephalogr. Clin. Neurophysiol. 106, 283–296 (1998).

  23. 23

    Fogassi, L., Gallese, V., Fadiga, L. & Rizzolatti, G. Neurons responding to the sight of goal directed hand/arm actions in the parietal area PF (7b) of the macaque monkey. Soc. Neurosci. Abstr. 24, 257 (1998).

  24. 24

    Gallese, V., Fogassi, L., Fadiga, L. & Rizzolatti, G. in Attention & Performance XIX. Common Mechanisms in Perception and Action (eds Prinz, W. & Hommel, B.) 334–355 (Oxford Univ. Press, Oxford, in the press).

  25. 25

    Amaral, D. G. et al. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Disfunction (ed. Aggleton, J. P.) 1–66 (Wiley-Liss, New York, 1992).

  26. 26

    Baron-Cohen, S. Mindblindness: an Essay on Autism and Theory of Mind (MIT Press/Bradford Books, 1995).

  27. 27

    Adolphs, R. Social cognition and the human brain. Trends Cogn. Sci. 3, 469–479 (1999).

  28. 28

    Brothers, L., Ring, B. & Kling, A. Response of neurons in the macaque amygdala to complex social stimuli. Behav. Brain Res. 41, 199–213 (1990).

  29. 29

    Brothers, L. & Ring, B. A neuroethological framework for the representation of minds. J. Cogn. Neurosci. 4, 107–118 (1992).

  30. 30

    Bonda, E., Petrides, M., Ostry, D. & Evans, A. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J. Neurosci. 16, 3737–3744 (1996).

  31. 31

    Carr, L., Iacoboni, M., Dubeau, M.-C., Mazziotta, J. C. & Lenzi, G. L. Observing and imitating emotion: implications for the neurological correlates of empathy. Proc. First Int. Conf. Soc. Cogn. Neurosci. (2001).

  32. 32

    Cole, J. D. About Face (MIT Press, Cambridge, Massachusetts, 1999).

  33. 33

    Cole, J. D. Empathy needs a face. J. Conscious Stud. 8, 51–68 (2001).

  34. 34

    Rizzolatti, G., Fadiga, L., Fogassi, L. & Gallese, V. Resonance behaviors and mirror neurons. Arch. Ital. Biol. 137, 85–100 (1999).

  35. 35

    Gastaut, H. J. & Bert, J. EEG changes during cinematographic presentation. Electroencephalogr. Clin. Neurophysiol. 6, 433–444 (1954).

  36. 36

    Cohen-Seat, G., Gastaut, H., Faure, J. & Heuyer, G. Etudes expérimentales de l'activité nerveuse pendant la projection cinématographique. Rev. Int. Filmol. 5, 7–64 (1954).

  37. 37

    Chatrian, G. E. in Handbook of Electroencephalography (ed. Remond, A.) 104–114 (Elsevier, Amsterdam, 1976).

  38. 38

    Cochin, S., Barthelemy, C., Lejeune, B., Roux, S., & Martineau, J. Perception of motion and qEEG activity in human adults. Electroencephalogr. Clin. Neurophysiol. 107, 287–295 (1998).

  39. 39

    Cochin, S., Barthelemy, C., Roux, S. & Martineau, J. Observation and execution of movement: similarities demonstrated by quantified electroencephalograpy. Eur. J. Neurosci. 11, 1839–1842 (1999).

  40. 40

    Altschuler, E. L., Vankov, A., Wang, V., Ramachandran, V. S. & Pineda, J. A. Person see, person do: human cortical electrophysiological correlates of monkey see monkey do cell. Soc. Neurosci. Abstr. 23, 719 (1997).

  41. 41

    Altschuler, E. L. et al. Mu wave blocking by observation of movement and its possible use as a tool to study theory of other minds. Soc. Neurosci. Abstr. 26, 68 (2000).

  42. 42

    Salmelin, R. & Hari, R. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60, 537–550 (1994).

  43. 43

    Hari, R. & Salmelin, R. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci. 20, 44–49 (1997).

  44. 44

    Salenius, S., Schnitzler, A., Salmelin, R., Jousmaki, V. & Hari, R. Modulation of human cortical rolandic rhythms during natural sensorimotor tasks. Neuroimage 5, 221–228 (1997).

  45. 45

    Hari, R. et al. Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc. Natl Acad. Sci. USA 95, 15061–15065 (1998).

  46. 46

    Fadiga, L. Fogassi, L., Pavesi, G. & Rizzolatti, G. Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol. 73, 2608–2611 (1995).

  47. 47

    Strafella, A. P. & Paus, T. Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study. Neuroreport 11, 2289–2292 (2000).

  48. 48

    Baldissera, F., Cavallari, P., Craighero, L. & Fadiga, L. Modulation of spinal excitability during observation of hand actions in humans. Eur. J. Neurosci. 13, 190–194 (2001).

  49. 49

    Rizzolatti, G. et al. Localization of grasp representation in humans by PET: 1. Observation versus execution. Exp. Brain Res. 111, 246–252 (1996).

  50. 50

    Grafton, S. T., Arbib, M. A., Fadiga, L. & Rizzolatti, G. Localization of grasp representations in humans by PET: 2. Observation compared with imagination. Exp. Brain Res. 112, 103–111 (1996).

  51. 51

    Decety, J. et al. Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120, 1763–1777 (1997).

  52. 52

    Grèzes, J., Costes, N. & Decety, J. Top–down effect of strategy on the perception of human biological motion: a PET investigation. Cogn. Neuropsychol. 15, 553–582 (1998).

  53. 53

    Rizzolatti, G. & Arbib, M. A. Language within our grasp. Trends Neurosci. 21, 188–194 (1998).

  54. 54

    Von Bonin, G. & Bailey, P. The Neocortex of Macaca Mulatta (Univ. Illinois Press, Urbana, 1947).

  55. 55

    Petrides, M. & Pandya, D. N. in Handbook of Neuropsychology Vol. IX (eds Boller, F. & Grafman, J.) 17–58 (Elsevier, New York, 1997).

  56. 56

    Krams, M., Rushworth, M. F., Deiber, M. P., Frackowiak, R. S. & Passingham, R. E. The preparation, execution and suppression of copied movements in the human brain. Exp. Brain Res. 120, 386–398 (1998).

  57. 57

    Binkofski, F. et al. A fronto-parietal circuit for object manipulation in man: evidence from an fMRI study. Eur. J. Neurosci. 11, 3276–3286 (1999).

  58. 58

    Ehrsson, H. H. et al. Cortical activity in precision- versus power-grip tasks: an fMRI study. J. Neurophysiol. 83, 528–536 (2000).

  59. 59

    Iacoboni, M. et al. Cortical mechanisms of human imitation. Science 286, 2526–2528 (1999).

  60. 60

    Nishitani, N. & Hari, R. Temporal dynamics of cortical representation for action. Proc. Natl Acad. Sci. USA 97, 913–918 (2000).

  61. 61

    Buccino, G. et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur. J. Neurosci. 13, 400–404 (2001).

  62. 62

    Jellema, T., Baker, C. I., Wicker, B. & Perrett, D. I. Neural representation for the perception of the intentionality of actions. Brain Cogn 44, 280–302 (2000).

  63. 63

    Umiltà, M. A. et al. “I know what you are doing”: a neurophysiological study. Neuron 32, 91–101 (2001).

  64. 64

    Assad, J. A. & Maunsell, J. H. R. Neuronal correlates of inferred motion in primates posterior parietal cortex. Nature 373, 518–521 (1995).

  65. 65

    Fillion, C. M., Washburn, D. A. & Gulledge, J. P. Can monkeys (Macaca mulatta ) represent invisible displacement? J. Comp. Psychol. 110, 386–395 (1996).

  66. 66

    Visalberghi, E. & Fragaszy, D. in “Language” and Intelligence in Monkeys and Apes (eds Parker, S. T. & Gibson, K. R.) 247–273 (Cambridge Univ. Press, Cambridge, Massachusetts, 1990).

  67. 67

    Visalberghi, E. & Fragaszy, D. in Imitation in Animals and Artifacts (eds Dautenhahn, K. & Nehaniv, C.) (MIT Press, Boston, Massachusetts, in the press).

  68. 68

    Rizzolatti, G., Fadiga, L., Fogassi, L. & Gallese, V. in The Imitative Mind: Development, Evolution and Brain Bases (eds Prinz, W. & Meltzoff, A.) (Cambridge Univ. Press, Cambridge, in the press).

  69. 69

    Spence, K. W. Experimental studies of learning and higher mental processes in infra-human primates. Psychol. Bull. 34, 806–850 (1937).

  70. 70

    Thorpe, W. H. Learning and Instinct in Animals 2nd edn (Methuen and Co. Ltd, London, 1963).

  71. 71

    Whiten, A. & Ham, R. On the nature and evolution of imitation in the animal kingdom: reappraisal of a century of research. Adv. Study Behav. 21, 239–283 (1992).

  72. 72

    Whiten, A. Imitation of the sequential structure of actions by chimpanzees (Pan troglodytes). J. Comp. Psychol. 112, 270–281 (1998).

  73. 73

    Tomasello, M. & Call, J. Primate Cognition (Oxford Univ. Press, Oxford, 1997).

  74. 74

    Byrne, R. W. The Thinking Ape. Evolutionary Origins of Intelligence (Oxford Univ. Press, Oxford, 1995).

  75. 75

    Tinbergen, N. The Herring Gull's World (Collins, London, 1953).

  76. 76

    Meltzoff, A. N. & Moore, M. K. Imitation of facial and manual gestures by human neonates. Science 198, 75–78 (1977).

  77. 77

    Bråten, S. (ed.) Intersubjective Communication and Emotion in Early Ontogeny (Cambridge Univ. Press, Cambridge, 1999).

  78. 78

    Darwin, C. The Expression of the Emotions in Man and Animals (J. Murray, London, 1872).

  79. 79

    Dimberg, U., Thunberg, M. & Elmehed, K. Unconscious facial reactions to emotional facial expressions. Psychol. Sci. 11, 86–89 (2000).

  80. 80

    Hepp-Reymond, M. C., Hüsler, E. J., Maier, M. A. & Qi, H.-X. Force-related neuronal activity in two regions of the primate ventral premotor cortex. Can. J. Physiol. Pharmacol. 72, 571–579 (1994).

  81. 81

    Fogassi, L. et al. Visual responses in the dorsal premotor area F2 of the macaque monkey. Exp. Brain Res. 128, 194–199 (1999).

  82. 82

    Gentilucci, M. et al. Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp. Brain Res. 71, 475–490 (1988).

  83. 83

    Hoshi, E. & Tanji, J. Integration of target and body-part information in the premotor cortex when planning action. Nature 408, 466–470 (2000).

  84. 84

    Byrne, R. Imitation in action. Adv. Study Behav. (in the press).

  85. 85

    Byrne, R. W. Imitation without intentionality: using string-parsing to copy the organization of behaviour. Anim. Cogn 2, 63–72 (1999).

  86. 86

    Hikosaka, O., Rand, M. K., Miyachi, S. & Miyashita, K. Learning of sequential movements in the monkey: process of learning and retention of memory. J. Neurophysiol. 74, 1652–1661 (1995).

  87. 87

    Hikosaka, O., Miyashita, K., Miyachi, S., Sakai, K. & Lu, X. Differential roles of the frontal cortex, basal ganglia, and cerebellum in visuomotor sequence learning. Neurobiol. Learn. Mem. 70, 137–149 (1998).

  88. 88

    Hikosaka, O. et al. in The Cognitive Neurosciences 2nd edn (ed. Gazzaniga, M. S.) 553–572 (MIT Press, Cambridge, Massachusetts, 2000).

  89. 89

    Tanji, J. New concepts of the supplementary motor area. Curr. Opin. Neurobiol. 6, 782–787 (1996).

  90. 90

    Tanji, J., Shima, K. & Mushiake, H. Multiple cortical motor areas and temporal sequencing of movements. Brain Res. Cogn. Brain Res. 5, 117–122 (1996).

  91. 91

    Shima, K. & Tanji, J. Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J. Neurophysiol. 84, 2148–2160 (2000).

  92. 92

    Wolpert, D. M. Computational approaches to motor control. Trends Cogn. Sci. 1, 209–216 (1997).

  93. 93

    Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

  94. 94

    Kawato, M. Internal models for motor control and trajectory planning. Neuroreport 9, 718–727 (1999).

  95. 95

    Arbib, M. E. & Rizzolatti, G. in The Nature of Concepts. Evolution, Structure, and Representation (ed. Van Loocke, P.) 128–154 (Routledge, London, 1999).

  96. 96

    Greenwald, A. G. Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychol. Rev. 77, 73–99 (1970).

  97. 97

    Prinz, W. Perception and action planning. Eur. J. Cogn. Psychol. 9, 129–154 (1997).

  98. 98

    Brass, M., Bekkering, H., Wohlschlager, A. & Prinz, W. Compatibility between observed and executed finger movements: comparing symbolic, spatial and imitative cues. Brain Cogn 44, 124–143 (2000).

  99. 99

    Iacoboni, M. et al. Mirror properties in a sulcus angularis area. Neuroimage 5, S821 (2000).

  100. 100

    Gallese, V. & Goldman, A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 12, 493–501 (1998).

  101. 101

    Frith, C. D. & Frith, U. Interacting minds: a biological basis. Science 286, 1692–1695 (1999).

  102. 102

    Blakemore, S.-J. & Decety, J. From the perception of action to the understanding of intention. Nature Rev. Neurosci. 2, 561–567 (2001).

  103. 103

    Williams, J. H. G., Whiten, A., Suddendorf, T. & Perrett, D. I. Imitation, mirror neurons, and autism. Neurosci. Biobehav. Rev. 25, 287–295 (2001).

  104. 104

    Von Economo, C. The Cytoarchitectonics of the Human Cerebral Cortex (Oxford Univ. Press, London, 1929).

Download references

Author information

Related links

Related links


Positron emission tomography

Motor control

Magnetic resonance imaging

Attribution theory

Perception of motion

Theory of mind



A variant of the transcranial magnetic stimulation technique, in which two coils are used to generate magnetic fields in quick succession over the same cortical region or in different regions at the same time.


Also known as the Hoffmann reflex, the H reflex results from the stimulation of sensory fibres, which causes an excitatory potential in the motor neuron pool after a synaptic delay. Exceeding the potential threshold for a given motor neuron generates an action potential. The resulting discharge will cause the muscle fibres innervated by that neurone to be activated.


A movement not directed towards an object.


A disorder characterized by facial paralysis, attributed to defects in the development of the sixth (abducens) and seventh (facial) cranial nerves.


A philosophical movement founded by the German Edward Husserl, dedicated to describing the structures of experience as they present themselves to consciousness, without recourse to theory, deduction or assumptions from other disciplines, such as the natural sciences.


Stimuli devised by the Swedish psychologist Johannson to study biological motion without interference from shape. Light sources are attached to the joints of people and their movements are recorded in a dark environment.


A technique used to stimulate relatively restricted areas of the human cerebral cortex. It is based on the generation of a strong magnetic field near the area of interest which, if changed rapidly enough, will induce an electric field sufficient to stimulate neurons.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2, 661–670 (2001).

Download citation

Further reading