Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neural foundations of imagery

Key Points

  • Recent advances in cognitive neuroscience, including functional brain-imaging techniques, have shown that mental imagery makes use of much the same neural substrates as perception in the same sensory modality.

  • Visual mental imagery seems to use the same two pathways (ventral or object processing, and dorsal or spatial processing) as perception. Defects in one or other pathway often, but not always, produce parallel deficits in both perception and imagery. Auditory and motor imagery also draw on cortical areas involved in auditory perception and motor control, respectively.

  • There is evidence that early visual cortex (areas 17 and 18) is activated during some types of mental imagery. Detection of such activity seems to rely on the use of the most sensitive imaging techniques. It is possible that these areas are activated only if the imagery task used requires subjects to find high-resolution detail in a mental image.

  • Imagery of emotional events can activate the autonomic nervous system and amygdala in a similar way to perception of the same events, leading to physiological changes. For example, imagining threatening events can increase heart rate, skin conductance and breathing rate.

  • Future research should clarify the involvement of primary sensory cortices in imagery, and investigate individual variation in imagery abilities, among other issues. New imaging techniques, such as functional diffuse optical tomography, will aid these advances.


Mental imagery has, until recently, fallen within the purview of philosophy and cognitive psychology. Both enterprises have raised important questions about imagery, but have not made substantial progress in answering them. With the advent of cognitive neuroscience, these questions have become empirically tractable. Neuroimaging studies, combined with other methods (such as studies of brain-damaged patients and of the effects of transcranial magnetic stimulation), are revealing the ways in which imagery draws on mechanisms used in other activities, such as perception and motor control. Because of its close relation to these basic processes, imagery is now becoming one of the best understood 'higher' cognitive functions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Auditory imagery.
Figure 2: Mental rotation.
Figure 3: Area 17 is involved in visual imagery.


  1. 1

    Watson, J. B. Psychology as the behaviorist views it. Psychol. Rev. 20, 158–177 (1913).

    Article  Google Scholar 

  2. 2

    Paivio, A. Imagery and Verbal Processes (Holt, Rinehart and Winston, New York, 1971).

    Google Scholar 

  3. 3

    Pylyshyn, Z. W. What the mind's eye tells the mind's brain: a critique of mental imagery. Psychol. Bull. 80, 1–24 (1973).This is a contemporary critique of visual mental imagery, which focuses on the necessity to have explicit, mechanistic theories. Findings from, and theories in, cognitive neuroscience address many of the concerns voiced here.

    Article  Google Scholar 

  4. 4

    Farah, M. J. The neurological basis of mental imagery: a componential analysis. Cognition 18, 245–272 (1984).This is a creative analysis of the perceptual and imagery abilities that are damaged and spared following brain damage. This analysis shows, without question, that imagery is not a single faculty, but is carried out by the joint operation of a set of processes.

    CAS  Article  Google Scholar 

  5. 5

    Chatterjee, A. & Southwood, M. H. Cortical blindness and visual imagery. Neurology 45, 2189–2195 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  7. 7

    Levine, D. N., Warach, J. & Farah, M. J. Two visual systems in mental imagery: dissociation of 'what' and 'where' in imagery disorders due to bilateral posterior cerebral lesions. Neurology 35, 1010–1018 (1985).

    CAS  Article  Google Scholar 

  8. 8

    De Vreese, L. P. Two systems for colour-naming defects: verbal disconnection vs colour imagery disorder. Neuropsychologia 29, 1–18 (1991).

    CAS  Article  Google Scholar 

  9. 9

    Young, A. W., Humphreys, G. W., Riddoch, M. J., Hellawell, D. J. & De Haan, E. H. Recognition impairments and face imagery. Neuropsychologia 32, 693–702 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Behrmann, M., Winocur, G. & Moscovitch, M. Dissociation between mental imagery and object recognition in a brain-damaged patient. Nature 359, 636–637 (1992).

    CAS  Article  Google Scholar 

  11. 11

    Jankowiak, J., Kinsbourne, M., Shalev, R. S. & Bachman, D. L. Preserved visual imagery and categorization in a case of associative visual agnosia. J. Cogn. Neurosci. 4, 119–131 (1992).

    CAS  Article  Google Scholar 

  12. 12

    Behrmann, M. The mind's eye mapped onto the brain's matter. Curr. Dir. Psychol. Sci. 9, 50–54 (2000).

    Article  Google Scholar 

  13. 13

    Kosslyn, S. M., Thompson, W. L. & Alpert, N. M. Neural systems shared by visual imagery and visual perception: a positron emission tomography study. Neuroimage 6, 320–334 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Cohen, M. S. et al. Changes in cortical activity during mental rotation: a mapping study using functional MRI. Brain 119, 89–100 (1996).

    Article  Google Scholar 

  15. 15

    Kosslyn, S. M., DiGirolamo, G., Thompson, W. L. & Alpert, N. M. Mental rotation of objects versus hands: neural mechanisms revealed by positron emission tomography. Psychophysiology 35, 151–161 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Jordan, K., Heinze, H. J., Lutz, K., Kanowski, M. & Jancke, L. Cortical activations during the mental rotation of different visual objects. Neuroimage 13, 143–152 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Ng, V. W. et al. Identifying rate-limiting nodes in large-scale cortical networks for visuospatial processing: an illustration using fMRI. J. Cogn. Neurosci. 13, 537–545 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Richter, W. et al. Motor area activity during mental rotation studied by time-resolved single-trial fMRI. J. Cogn. Neurosci. 12, 310–320 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Kosslyn, S. M. et al. The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284, 167–170 (1999).This study demonstrates that area 17 is activated during imagery, and that impairing the functioning of this area, in turn, impairs the performance of an imagery task, providing evidence that this area has a causal role in such processing.

    CAS  Article  Google Scholar 

  20. 20

    O'Craven, K. M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci. 12, 1013–1023 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Zatorre, R. J. & Halpern, A. R. Effect of unilateral temporal-lobe excision on perception and imagery of songs. Neuropsychologia 31, 221–232 (1993).

    CAS  Article  Google Scholar 

  23. 23

    Zatorre, R. J., Halpern, A. R., Perry, D. W., Meyer, E. & Evans, A. C. Hearing in the mind's ear: a PET investigation of musical imagery and perception. J. Cogn. Neurosci. 8, 29–46 (1996).Auditory imagery is in many ways analogous to visual imagery, but activates only 'higher level' brain areas, not early auditory cortex. The similarities and differences between the different modalities illuminate key facets of the underlying mechanisms of imagery.

    CAS  Article  Google Scholar 

  24. 24

    Halpern, A. R. & Zatorre, R. J. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cereb. Cortex 9, 697–704 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Griffiths, T. D. Musical hallucinosis in acquired deafness. Phenomenology and brain substrate. Brain 123, 2065–2076 (2000).

    Article  Google Scholar 

  26. 26

    Decety, J., Jeannerod, J. & Prablanc, C. The timing of mentally represented actions. Behav. Brain Res. 34, 35–42 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B. & Massey, J. T. Mental rotation of the neuronal population vector. Science 243, 234–236 (1989).

    CAS  Article  Google Scholar 

  28. 28

    Shepard, R. N. & Metzler, J. Mental rotation of three-dimensional objects. Science 171, 701–703 (1971).This is the classic — and in many ways still the best — study of mental rotation. It is methodologically tight and reveals that rotation in the picture plane and in depth are equally easy, even though the stimuli are only pictures of three-dimensional objects.

    CAS  Article  Google Scholar 

  29. 29

    Parsons, L. M. et al. Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375, 54–58 (1995).

    CAS  Article  Google Scholar 

  30. 30

    Decety, J. Neural representation for action. Rev. Neurosci. 7, 285–297 (1996).

    CAS  Article  Google Scholar 

  31. 31

    Jeannerod, M. & Decety, J. Mental motor imagery: a window into the representational stages of action. Curr. Opin. Neurobiol. 5, 727–732 (1995).

    CAS  Article  Google Scholar 

  32. 32

    Jeannerod, M. The representing brain: neural correlates of motor intention and imagery. Behav. Brain Sci. 17, 187–245 (1994).

    Article  Google Scholar 

  33. 33

    Kosslyn, S. M., Thompson, W. L., Wraga, M. & Alpert, N. M. Imagining rotation by endogenous versus exogenous forces: distinct neural mechanisms. Neuroreport 12, 2519–2525 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Ganis, G., Keenan, J. P., Kosslyn, S. M. & Pascual-Leone, A. Transcranial magnetic stimulation of primary motor cortex affects mental rotation. Cereb. Cortex 10, 175–180 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Driskell, J., Copper, C. & Moran, A. Does mental practice enhance performance? J. Appl. Psychol. 79, 481–492 (1994).

    Article  Google Scholar 

  36. 36

    Maring, J. R. Effects of mental practice on rate of skill acquisition. Phys. Ther. 70, 165–172 (1990).

    CAS  Article  Google Scholar 

  37. 37

    Weiss, T., Hansen, E., Rost, R. & Beyer, L. Mental practice of motor skills used in poststroke rehabilitation has own effects on central nervous activation. Int. J. Neurosci. 78, 157–166 (1994).

    CAS  Article  Google Scholar 

  38. 38

    Pylyshyn, Z. W. Psychological explanations and knowledge-dependent processes. Cognition 10, 267–274 (1981).

    CAS  Article  Google Scholar 

  39. 39

    Thompson, W. L. & Kosslyn, S. M. in Brain Mapping II: the Systems (eds Toga, A. W. & Mazziotta, J. C.) 535–560 (Academic, San Diego, 2000).This meta-analysis and review shows that different aspects of imagery tasks predict activation in early visual cortex (for example, the need to extract high-resolution details), posterior parietal cortex (used in spatial tasks) and inferotemporal cortex (used in imagery tasks that do not require the extraction of high-resolution details).

    Book  Google Scholar 

  40. 40

    Kosslyn, S. M., Thompson, W. L., Kim, I. J. & Alpert, N. M. Topographical representations of mental images in primary visual cortex. Nature 378, 496–498 (1995).This study provides evidence that imagery not only activates early visual cortex, but activates such cortex selectively, depending on the properties of the visualized object; specifically, objects that subtend different visual angles activate different parts of cortex, as is found in perception.

    CAS  Article  Google Scholar 

  41. 41

    Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).This paper is a landmark in the development of techniques to delineate topographically organized areas in the human brain; such techniques will no doubt prove to be increasingly important in the study of mental imagery.

    CAS  Article  Google Scholar 

  42. 42

    Tootell, R. B. H., Hadjikani, N. K., Mendola, J. D., Marrett, S. & Dale, A. M. From retinotopy to recognition: fMRI in human visual cortex. Trends Cogn. Sci. 2, 174–183 (1998).

    CAS  Article  Google Scholar 

  43. 43

    Klein, I., Paradis, A.-L., Poline, J.-B., Kosslyn, S. M. & Le Bihan, D. Transient activity in human calcarine cortex during visual imagery. J. Cogn. Neurosci. 12, 15–23 (2000).

    Article  Google Scholar 

  44. 44

    Farah, M. J., Soso, M. J. & Dasheiff, R. M. Visual angle of the mind's eye before and after unilateral occipital lobectomy. J. Exp. Psychol. Hum. Percept. Perform. 18, 241–246 (1992).

    CAS  Article  Google Scholar 

  45. 45

    Kosslyn, S. M., Thompson, W. L., Kim, I. J., Rauch, S. L. & Alpert, N. M. Individual differences in cerebral blood flow in area 17 predict the time to evaluate visualized letters. J. Cogn. Neurosci. 8, 78–82 (1996).

    CAS  Article  Google Scholar 

  46. 46

    Mellet, E. et al. Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. Neuroimage 12, 588–600 (2000).

    CAS  Article  Google Scholar 

  47. 47

    Mellet, E. et al. Functional anatomy of spatial mental imagery generated from verbal instructions. J. Neurosci. 16, 6504–6512 (1996).

    CAS  Article  Google Scholar 

  48. 48

    Mellet, E., Tzourio N., Denis, M. & Mazoyer, B. A positron emission tomography study of visual and mental spatial exploration. J. Cogn. Neurosci. 4, 433–445 (1995).

    Article  Google Scholar 

  49. 49

    Crick, F. & Koch, C. Are we aware of neural activity in primary visual cortex? Nature 375, 121–123 (1995).

    CAS  Article  Google Scholar 

  50. 50

    Skinner, B. F. Why I am not a cognitive psychologist. Behaviorism 5, 1–10 (1977).

    Google Scholar 

  51. 51

    Lang, P. J., Greenwald, M. K., Bradley, M. M. & Hamm, A. O. Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30, 261–273 (1993).

    CAS  Article  Google Scholar 

  52. 52

    Kosslyn, S. M. et al. Neural effects of visualizing and perceiving aversive stimuli: a PET investigation. Neuroreport 7, 1569–1576 (1996).

    CAS  Article  Google Scholar 

  53. 53

    Kreiman, G., Koch, C. & Fried, I. Imagery neurons in the human brain. Nature 408, 357–361 (2000).

    CAS  Article  Google Scholar 

  54. 54

    LeDoux, J. E. Emotion: clues from the brain. Annu. Rev. Psychol. 46, 209–235 (1995).

    CAS  Article  Google Scholar 

  55. 55

    LeDoux, J. E. The Emotional Brain: the Mysterious Underpinnings of Emotional Life (Simon & Schuster, New York, 1996.)

    Google Scholar 

  56. 56

    Obrig, H. et al. Near-infrared spectroscopy: does it function in functional activation studies of the adult brain? Int. J. Psychophysiol. 35, 125–142 (2000).

    CAS  Article  Google Scholar 

  57. 57

    Rizzolatti, G., Luppino, G. & Matelli, M. The organization of the cortical motor system: new concepts. Electroencephalogr. Clin. Neurophysiol. 106, 283–296 (1998).

    CAS  Article  Google Scholar 

  58. 58

    Hari, R. et al. Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc. Natl Acad. Sci. USA 95, 15061–15065 (1998).

    CAS  Article  Google Scholar 

  59. 59

    Grafton, S. T., Arbib, M. A., Fadiga, L. & Rizzolatti, G. Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp. Brain Res. 112, 103–111 (1996).

    CAS  Article  Google Scholar 

  60. 60

    Rizzolatti, G. et al. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp. Brain Res. 111, 246–252 (1996).

    CAS  Article  Google Scholar 

  61. 61

    Fadiga, L., Fogassi, L., Pavesi, G. & Rizzolatti, G. Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol. 73, 2608–2611 (1995).

    CAS  Article  Google Scholar 

  62. 62

    Gangitano, M., Mottaghy, F. M. & Pascual-Leone, A. Phase-specific modulation of cortical motor output during movement observation. Neuroreport 12, 1489–1492 (2001).

    CAS  Article  Google Scholar 

  63. 63

    Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Rev. Neurosci. 2, 661–670 (2001).

    CAS  Article  Google Scholar 

Download references

Author information



Related links

Related links



Positron emission tomography

Magnetic resonance imaging

Single-neuron recording



The school of psychology that focused solely on observable stimuli, responses and the consequences of responses.


(TMS). A technique used to induce a transient interruption of normal activity in a relatively restricted area of the brain. It is based on the generation of a strong magnetic field near the area of interest, which, if changed rapidly enough, will induce an electric field sufficient to stimulate neurons.


Primary motor cortex (area M1). Part of the frontal lobe, which is used to control fine-grained movements.


(SPECT). A method in which images are generated by using radionuclides that emit single photons of a given energy. Images are captured at multiple positions by rotating the sensor around the subject; the three-dimensional distribution of radionuclides is then used to reconstruct the images. SPECT can be used to observe biochemical and physiological processes, as well as the size and volume of structures.


A feature of a visual percept or image that requires high resolution (operationalized here as 0.5° of visual angle or less, as viewed from the subject's vantage point) to discern. A meta-analysis indicates that the early visual cortex is activated during visual mental imagery when the task requires the extraction of high-resolution details from a visualized stimulus.


The area of the sensory space in which stimulus presentation leads to the response of a particular sensory neuron.


(DOT). A neuroimaging technique that uses arrays of lasers and detectors to measure changes in the absorption of near-infrared light caused by neural activation. The most widely used type of DOT measures changes in blood oxygenation caused by neural activity.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kosslyn, S., Ganis, G. & Thompson, W. Neural foundations of imagery. Nat Rev Neurosci 2, 635–642 (2001).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing