Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolutionary conservation between budding yeast and human kinetochores

Key Points

  • The kinetochore (centromere DNA and associated proteins) and its regulating system are essential for segregating chromosomes during mitosis.

  • The kinetochore provides the site of attachment to the mitotic spindle, and is also the site at which completion of metaphase is sensed by the cell-cycle regulatory machinery to coordinate the synchronous separation of chromosomes at the onset of anaphase. The kinetochore of yeast Saccharomyces cerevisiae is the best characterized.

  • This review describes the current state of knowledge of how the kinetochore is conserved between budding yeast and humans by looking at individual kinetochore components and considers them as three sets of subcomponents: first, the chromosomal DNA–inner kinetochore protein interface; second, the inner kinetochore–mitotic spindle interface; and last, the kinetochore protein–cell-cycle regulatory machinery interface.

  • The authors conclude that molecular understanding of the less complex budding yeast kinetochore provides an excellent framework for understanding the more complex kinetochores of humans. Furthermore, evidence indicates that the kinetochore and its regulating system are indeed highly conserved between budding yeast and humans, and research into the budding yeast should continue to reveal additional conserved functions at the kinetochore.

Abstract

Accurate chromosome segregation during mitosis requires the correct assembly of kinetochores — complexes of centromeric DNA and proteins that link chromosomes to spindle microtubules. Studies on the kinetochore of the budding yeast Saccharomyces cerevisiae have revealed functionally novel components of the kinetochore and its regulatory complexes, some of which are highly conserved in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetochore function in budding yeast and mammals.
Figure 2: Kinetochore organization.
Figure 3: The DNA–inner kinetochore protein interface.
Figure 4: Kinetochore function and anaphase progression.

Similar content being viewed by others

References

  1. Goshima, G. & Yanagida, M. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100, 619–633 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. He, X., Asthana, S. & Sorger, P. K. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101, 763–775 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nature Cell Biol. 2, 492–499 (2000).References 1–3 describe yeast kinetochore behaviour throughout the cell cycle.

    Article  CAS  PubMed  Google Scholar 

  4. McCarroll, R. M. & Fangman, W. L. Time of replication of yeast centromeres and telomeres. Cell 54, 505–513 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Guacci, V., Hogan, E. & Koshland, D. Centromere position in budding yeast: evidence for anaphase A. Mol. Biol. Cell 8, 957–972 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O'Toole, E. T., Winey, M. & McIntosh, J. R. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 10, 2017–2031 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jin, Q. W., Fuchs, J. & Loidl, J. Centromere clustering is a major determinant of yeast interphase nuclear organization. J. Cell Sci. 113, 1903–1912 (2000).

    CAS  PubMed  Google Scholar 

  8. Rieder, C. L. & Salmon, E. D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell Biol. 124, 223–233 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Fitzgerald-Hayes, M., Clarke, L. & Carbon, J. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29, 235–244 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Hieter, P. et al. Functional selection and analysis of yeast centromeric DNA. Cell 42, 913–921 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Baker, R. E. & Masison, D. C. Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1. Mol. Cell. Biol. 10, 2458–2467 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cai, M. & Davis, R. W. Yeast centromere binding protein CBF1, of the helix–loop–helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61, 437–446 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Gaudet, A. & Fitzgerald-Hayes, M. Alterations in the adenine-plus-thymine-rich region of CEN3 affect centromere function in Saccharomyces cerevisiae. Mol. Cell. Biol. 7, 68–75 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stoler, S., Keith, K. C., Curnick, K. E. & Fitzgerald-Hayes, M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9, 573–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Meluh, P. B., Yang, P., Glowczewski, L., Koshland, D. & Smith, M. M. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94, 607–613 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. McGrew, J., Diehl, B. & Fitzgerald-Hayes, M. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 530–538 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ng, R. & Carbon, J. Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae. Mol. Cell. Biol. 7, 4522–4534 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lechner, J. & Carbon, J. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64, 717–725 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Doheny, K. F. et al. Identification of essential components of the S. cerevisiae kinetochore. Cell 73, 761–774 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goh, P. Y. & Kilmartin, J. V. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 121, 503–512 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, W., Lechner, J. & Carbon, J. Isolation and characterization of a gene (CBF2) specifying a protein component of the budding yeast kinetochore. J. Cell Biol. 121, 513–519 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Lechner, J. A zinc finger protein, essential for chromosome segregation, constitutes a putative DNA binding subunit of the Saccharomyces cerevisiae kinetochore complex, Cbf3. EMBO J. 13, 5203–5211 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Strunnikov, A. V., Kingsbury, J. & Koshland, D. CEP3 encodes a centromere protein of Saccharomyces cerevisiae. J. Cell Biol. 128, 749–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Connelly, C. & Hieter, P. Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86, 275–285 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stemmann, O. & Lechner, J. The Saccharomyces cerevisiae kinetochore contains a cyclin-CDK complexing homologue, as identified by in vitro reconstitution. EMBO J. 15, 3611–3620 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaplan, K. B., Hyman, A. A. & Sorger, P. K. Regulating the yeast kinetochore by ubiquitin-dependent degradation and Skp1p-mediated phosphorylation. Cell 91, 491–500 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Kitagawa, K., Skowyra, D., Elledge, S. J., Harper, J. W. & Hieter, P. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol. Cell 4, 21–33 (1999).References 25–28 show that the highly conserved proteins Skp1 and Sgt1 are required for activation of the yeast kinetochore and components of the SCF ubiquitin-ligase complex.

    Article  CAS  PubMed  Google Scholar 

  29. Feldman, R. M., Correll, C. C., Kaplan, K. B. & Deshaies, R. J. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor. Cell 91, 221–230 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Murphy, T. D. & Karpen, G. H. Centromeres take flight: α-satellite and the quest for the human centromere. Cell 93, 317–320 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Harrington, J. J., Van Bokkelen, G., Mays, R. W., Gustashaw, K. & Willard, H. F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nature Genet. 15, 345–355 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Ikeno, M. et al. Construction of YAC-based mammalian artificial chromosomes. Nature Biotechnol. 16, 431–439 (1998).

    Article  CAS  Google Scholar 

  34. Warburton, P. E. et al. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr. Biol. 7, 901–904 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Vafa, O. & Sullivan, K. F. Chromatin containing CENP-A and α-satellite DNA is a major component of the inner kinetochore plate. Curr. Biol. 7, 897–900 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Yoda, K., Kitagawa, K., Masumoto, H., Muro, Y. & Okazaki, T. A human centromere protein, CENP-B, has a DNA binding domain containing four potential α helices at the NH2 terminus, which is separable from dimerizing activity. J. Cell Biol. 119, 1413–1427 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Masumoto, H., Masukata, H., Muro, Y., Nozaki, N. & Okazaki, T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109, 1963–1973 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Kitagawa, K., Masumoto, H., Ikeda, M. & Okazaki, T. Analysis of protein–DNA and protein–protein interactions of centromere protein B (CENP-B) and properties of the DNA–CENP-B complex in the cell cycle. Mol. Cell. Biol. 15, 1602–1612 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kapoor, M. et al. The cenpB gene is not essential in mice. Chromosoma 107, 570–576 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Perez-Castro, A. V. et al. Centromeric protein B null mice are viable with no apparent abnormalities. Dev. Biol. 201, 135–143 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Hudson, D. F. et al. Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J. Cell Biol. 141, 309–319 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoda, K. et al. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc. Natl Acad. Sci. USA 97, 7266–7271 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. ten Hoopen, R., Manteuffel, R., Dolezel, J., Malysheva, L. & Schubert, I. Evolutionary conservation of kinetochore protein sequences in plants. Chromosoma 109, 482–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Meluh, P. B. & Koshland, D. Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev. 11, 3401–3412 (1997).Pioneered the techniques of crosslinking and chromatin immunoprecipitation for analysing the binding of centromere proteins in vivo in budding yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hyland, K. M., Kingsbury, J., Koshland, D. & Hieter, P. Ctf19p: A novel kinetochore protein in Saccharomyces cerevisiae and a potential link between the kinetochore and mitotic spindle. J. Cell Biol. 145, 15–28 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ortiz, J., Stemmann, O., Rank, S. & Lechner, J. A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev. 13, 1140–1155 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin, H. et al. Phospholipase C is involved in kinetochore function in Saccharomyces cerevisiae. Mol. Cell. Biol. 20, 3597–3607 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng, X. et al. Slk19p is a centromere protein that functions to stabilize mitotic spindles. J. Cell Biol. 146, 415–425 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoon, H. J. & Carbon, J. Participation of Bir1p, a member of the inhibitor of apoptosis family, in yeast chromosome segregation events. Proc. Natl Acad. Sci. USA 96, 13208–13213 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Janke, C. et al. The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. EMBO J. 20, 777–791 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wigge, P. A. & Kilmartin, J. V. The Ndc80p Complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 152, 349–360 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. He, X., Rines, D. R., Espelin, C. W. & Sorger, P. K. Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106, 195–206 (2001).References 47 and 53 describe several outer-kinetochore proteins.

    Article  CAS  PubMed  Google Scholar 

  54. Earnshaw, W. C. & Cooke, C. A. Proteins of the inner and outer centromere of mitotic chromosomes. Genome 31, 541–552 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Earnshaw, W. C., Ratrie, H. & Stetten, G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98, 1–12 (1989).

    Article  CAS  PubMed  Google Scholar 

  56. Sullivan, B. A. & Schwartz, S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet. 4, 2189–2197 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Tomkiel, J., Cooke, C. A., Saitoh, H., Bernat, R. L. & Earnshaw, W. C. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J. Cell Biol. 125, 531–545 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Fukagawa, T. & Brown, W. R. Efficient conditional mutation of the vertebrate CENP-C gene. Hum. Mol. Genet. 6, 2301–2308 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Kalitsis, P., Fowler, K. J., Earle, E., Hill, J. & Choo, K. H. Targeted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death. Proc. Natl Acad. Sci. USA 95, 1136–1141 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rattner, J. B., Rao, A., Fritzler, M. J., Valencia, D. W. & Yen, T. J. CENP-F is a ca. 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization. Cell. Motil. Cytoskeleton 26, 214–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Liao, H., Winkfein, R. J., Mack, G., Rattner, J. B. & Yen, T. J. CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J. Cell Biol. 130, 507–518 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Zhu, X. et al. Characterization of a novel 350-kilodalton nuclear phosphoprotein that is specifically involved in mitotic-phase progression. Mol. Cell. Biol. 15, 5017–5029 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chan, G. K., Schaar, B. T. & Yen, T. J. Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J. Cell Biol. 143, 49–63 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yen, T. J. et al. CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J. 10, 1245–1254 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Steuer, E. R., Wordeman, L., Schroer, T. A. & Sheetz, M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345, 266–268 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Pfarr, C. M. et al. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345, 263–265 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Cooke, C. A., Schaar, B., Yen, T. J. & Earnshaw, W. C. Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase. Chromosoma 106, 446–455 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Yao, X., Anderson, K. L. & Cleveland, D. W. The microtubule-dependent motor centromere-associated protein E (CENP-E) is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules. J. Cell Biol. 139, 435–447 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787–801 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maney, T., Ginkel, L. M., Hunter, A. W. & Wordeman, L. The kinetochore of higher eucaryotes: a molecular view. Int. Rev. Cytol. 194, 67–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Pierre, P., Scheel, J., Rickard, J. E. & Kreis, T. E. CLIP-170 links endocytic vesicles to microtubules. Cell 70, 887–900 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Dujardin, D. et al. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J. Cell Biol. 141, 849–862 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brown, M. T., Goetsch, L. & Hartwell, L. H. MIF2 is required for mitotic spindle integrity during anaphase spindle elongation in Saccharomyces cerevisiae. J. Cell Biol. 123, 387–403 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Meluh, P. B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol. Biol. Cell 6, 793–807 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Everett, R. D., Earnshaw, W. C., Findlay, J. & Lomonte, P. Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110. EMBO J. 18, 1526–1538 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cooke, C. A., Heck, M. M. & Earnshaw, W. C. The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J. Cell Biol. 105, 2053–2067 (1987).

    Article  CAS  PubMed  Google Scholar 

  78. Karki, S., LaMonte, B. & Holzbaur, E. L. Characterization of the p22 subunit of dynactin reveals the localization of cytoplasmic dynein and dynactin to the midbody of dividing cells. J. Cell Biol. 142, 1023–1034 (1998); erratum in 143, 561 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Skoufias, D. A., Mollinari, C., Lacroix, F. B. & Margolis, R. L. Human survivin is a kinetochore-associated passenger protein. J. Cell Biol. 151, 1575–1582 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Deveraux, Q. L. & Reed, J. C. IAP family proteins — suppressors of apoptosis. Genes Dev. 13, 239–252 (1999).

  81. Li, F. et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Trueheart, J., Boeke, J. D. & Fink, G. R. Two genes required for cell fusion during yeast conjugation: evidence for a pheromone-induced surface protein. Mol. Cell. Biol. 7, 2316–2328 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell 66, 519–531 (1991); erratum in 79, 388 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Chen, R. H., Brady, D. M., Smith, D., Murray, A. W. & Hardwick, K. G. The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol. Biol. Cell. 10, 2607–2618 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hardwick, K. G., Johnston, R. C., Smith, D. L. & Murray, A. W. MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. J. Cell Biol. 148, 871–882 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roberts, B. T., Farr, K. A. & Hoyt, M. A. The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol. Cell. Biol. 14, 8282–8291 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brady, D. M. & Hardwick, K. G. Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr. Biol. 10, 675–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Weiss, E. & Winey, M. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J. Cell Biol. 132, 111–123 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Hardwick, K. G., Weiss, E., Luca, F. C., Winey, M. & Murray, A. W. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273, 953–956 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Pangilinan, F. & Spencer, F. Abnormal kinetochore structure activates the spindle assembly checkpoint in budding yeast. Mol. Biol. Cell 7, 1195–1208 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tavormina, P. A. & Burke, D. J. Cell cycle arrest in cdc20 mutants of Saccharomyces cerevisiae is independent of Ndc10p and kinetochore function but requires a subset of spindle checkpoint genes. Genetics 148, 1701–1713 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gardner, R. D. et al. The spindle checkpoint of the yeast Saccharomyces cerevisiae requires kinetochore function and maps to the CBF3 domain. Genetics 157, 1493–1502 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Rieder, C. L., Schultz, A., Cole, R. & Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127, 1301–1310 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Chan, G. K., Jablonski, S. A., Sudakin, V., Hittle, J. C. & Yen, T. J. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J. Cell Biol. 146, 941–954 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, R. H., Waters, J. C., Salmon, E. D. & Murray, A. W. Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274, 242–246 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Chen, R. H., Shevchenko, A., Mann, M. & Murray, A. W. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol. 143, 283–295 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jin, D. Y., Spencer, F. & Jeang, K. T. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93, 81–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246–248 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89, 727–735 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Taylor, S. S., Ha, E. & McKeon, F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol. 142, 1–11 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Abrieu, A. et al. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106, 83–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Fisk, H. A. & Winey, M. The mouse mps1p-like kinase regulates centrosome duplication. Cell 106, 95–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Bernard, P., Hardwick, K. & Javerzat, J. P. Fission yeast bub1 is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis. J. Cell Biol. 143, 1775–1787 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Abrieu, A., Kahana, J. A., Wood, K. W. & Cleveland, D. W. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102, 817–826 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Weinert, T. & Hartwell, L. Control of G2 delay by the rad9 gene of Saccharomyces cerevisiae. J. Cell. Sci. 12, S145–S148 (1989). | PubMed |

    Article  Google Scholar 

  107. Kallio, M., Weinstein, J., Daum, J. R., Burke, D. J. & Gorbsky, G. J. Mammalian p55CDC mediates association of the spindle checkpoint protein Mad2 with the cyclosome/anaphase-promoting complex, and is involved in regulating anaphase onset and late mitotic events. J. Cell Biol. 141, 1393–1406 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cohen-Fix, O., Peters, J. M., Kirschner, M. W. & Koshland, D. Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 10, 3081–3093 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Funabiki, H. et al. Cut2 proteolysis required for sister-chromatid seperation in fission yeast. Nature 381, 438–441 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Amon, A. Together until separin do us part. Nature Cell Biol. 3, E12–E14 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Nasmyth, K., Peters, J. M. & Uhlmann, F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288, 1379–1385 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Tanaka, T., Cosma, M. P., Wirth, K. & Nasmyth, K. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98, 847–858 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Megee, P. C., Mistrot, C., Guacci, V. & Koshland, D. The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol. Cell 4, 445–450 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Wiens, G. R. & Sorger, P. K. Centromeric chromatin and epigenetic effects in kinetochore assembly. Cell 93, 313–316 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Du Sart, D. et al. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-α-satellite DNA. Nature Genet. 16, 144–153 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Williams, B. C., Murphy, T. D., Goldberg, M. L. & Karpen, G. H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nature Genet. 18, 30–37 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Ekwall, K., Olsson, T., Turner, B. M., Cranston, G. & Allshire, R. C. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 (1998).The first report that mutations are found in mitotic-checkpoint genes in human cancers.

    Article  CAS  PubMed  Google Scholar 

  119. Basu, J. et al. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J. Cell Biol. 146, 13–28 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Dobles, M., Liberal, V., Scott, M. L., Benezra, R. & Sorger, P. K. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101, 635–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Kalitsis, P., Earle, E., Fowler, K. J. & Choo, K. H. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev. 14, 2277–2282 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kitagawa, R. & Rose, A. M. Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nature Cell Biol. 1, 514–521 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–359 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Cbf1

Cse4

NDC10

CEP3

CTF13

SKP1

Sgt1

CENPA

CENPB

SKP1

SGT1

Mif2

Ctf19

Mcm21

Mtw1

CEN3

CEN15

Slk19

Plc1

KAR3

CIN8

phospholipase C

Bir1

Ndc80

Nuf2

Spc24

Spc25

Spc19

Spc34

Dam1

Stu2

Bik1

CENPC

CENPF

CENPE

MCAK

CLIP170

SUMO-1

Smt3

survivin

Mad1

Mad2

Mad3

Bub3

Cdc20

BUB1

MPS1

BUBR1

Smc1

Smc3

Scc1

Rec8

Esp1

Glossary

EUPLOIDY

An entire set of chromosomes is represented in integer increments (haploid, one set; diploid, two sets; triploid, three sets).

ALPHOID DNA

α-satellite DNA; highly repetitive satellite DNA.

SCF UBIQUITIN-LIGASE COMPLEX

An E3 enzyme that targets ubiquitin to cell-cycle-regulatory proteins (for example, Sic1, Clns), using an F-box protein as a specificity factor. SCF refers to 'Skp1/Cul1/F-box protein'.

CHIP

(in vivo crosslinking chromatin-immunoprecipitation methods). After live cells are chemically crosslinked, extracted and mechanically sheared, chromatin fragments (crosslinked DNA–protein complexes) are immunoprecipitated.

BIR MOTIF

A motif found in the 'inhibition of apoptosis' (IAP) proteins. It is essential for interaction of the IAP proteins with pro-apoptotic proteins, including the caspase family of death proteases.

RING-FINGER

A cysteine-rich zinc-binding domain, which is thought to be required for protein–protein interactions.

MIDBODY

Dense structure formed during cytokinesis at the cleavage furrow. It consists of remnants of spindle fibres and other amorphous material and disappears before cell division is completed.

NOCODAZOLE

A microtubule-depolymerizing drug.

ANEUPLOIDY

One or more chromosomes of a normal set of chromosomes are missing, or present in more than their usual number of copies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitagawa, K., Hieter, P. Evolutionary conservation between budding yeast and human kinetochores. Nat Rev Mol Cell Biol 2, 678–687 (2001). https://doi.org/10.1038/35089568

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35089568

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing