Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystalline ion beams

Abstract

By freezing out the motion between particles in a high-energy storage ring, it should be possible1,2,3,4 to create threads of ions, offering research opportunities beyond the realm of standard accelerator physics. The usual heating due to intra-beam collisions should completely vanish, giving rise to a state of unprecedented brilliance. Despite a continuous improvement of beam cooling techniques, such as electron cooling and laser cooling, the ultimate goal5 of beam crystallization has not yet been reached in high-energy storage rings. Electron-cooled dilute beams of highly charged ions show liquid-like order6,7 with unique applications8. An experiment5 using laser cooling9,10 suggested a reduction of intra-beam heating, although the results were ambiguous. Here we demonstrate the crystallization of laser-cooled Mg+ beams circulating in the radiofrequency quadrupole storage ring PALLAS11,12 at a velocity of 2,800 m s-1, which corresponds to a beam energy of 1 eV. A sudden collapse of the transverse beam size and the low longitudinal velocity spread clearly indicate the phase transition. The continuous ring-shaped crystalline beam shows exceptional stability, surviving for more than 3,000 revolutions without cooling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Images of ion crystals at rest in PALLAS.
Figure 2: Axial and radial cut through the r.f. quadrupole storage ring PALLAS.
Figure 3: Fluorescence rate of the ion beam as a function of the frequency detuning of the co-propagating laser.
Figure 4: Transverse beam profiles and velocity profiles before (a, c) and after (b, d) the phase transition.
Figure 5: Fluorescence signal of the ion crystal at rest and the crystalline beam after blocking and unblocking the cooling lasers.

Similar content being viewed by others

References

  1. Parkhomchuk, V. in Crystalline Beams and Related Issues (eds Maletic, D. M. & Ruggiero, A. G.) 409–420 (World Scientific, Singapore, 1996).

    Google Scholar 

  2. Pestrikov, D. V. in Crystalline Beams and Related Issues (eds Maletic, D. M. & Ruggiero, A. G.) 275–294 (World Scientific, Singapore, 1996).

    Google Scholar 

  3. Schiffer, J. P. & Kienle, P. Could there be an ordered condensed state in beams of fully stripped heavy ions. Z. Phys. A 321, 181 (1985).

    Article  CAS  Google Scholar 

  4. Rahman, A. & Schiffer, J. P. Structure of a one-component plasma in an external field. A molecular-dynamics study of particle arrangement in a heavy-ion storage ring. Phys. Rev. Lett. 57, 1133–1136 (1986).

    Article  CAS  Google Scholar 

  5. Eisenbarth, U. et al. Anomalous behaviour of laser-cooled fast ion beams. Hyperfine Interact. 127, 223–235 (2000).

    Article  CAS  Google Scholar 

  6. Steck, M. et al. Anomalous temperature reduction of electron-cooled heavy ion beams in the storage ring ESR. Phys. Rev. Lett. 77, 3803–3806 (1996).

    Article  CAS  Google Scholar 

  7. Hasse, R. W. Theoretical verification of Coulomb order of ions in a storage ring. Phys. Rev. Lett. 83, 3430–3433 (1999).

    Article  CAS  Google Scholar 

  8. Radon, T. et al. Schottky mass measurements of stored and cooled neutron-deficient projectile fragments in the element range of 57. Nucl. Phys. A 677, 75–99 (2000).

    Article  Google Scholar 

  9. Lauer, I. et al. Transverse laser cooling of a fast stored ion beam through dispersive coupling. Phys. Rev. Lett. 81, 2052–2055 (1998).

    Article  CAS  Google Scholar 

  10. Madsen, N. et al. Density limitations in a stored laser-cooled ion beam. Phys. Rev. Lett. 83, 4301–4304 (1999).

    Article  CAS  Google Scholar 

  11. Schätz, T., Habs, D., Podlech, C., Wei, J. & Schramm, U. Towards crystalline ion beams—the PALLAS ring trap. in Proc. Workshop on Trapped Charged Particles and Fundamental Physics (eds Dubin, D. & Schneider, D.) AIP Conf. Proc. 457, 269–273 (1999).

    Google Scholar 

  12. Schramm, U., Schätz, T. & Habs, D. in Proc. Conf. on Appl. of Acc. in Research and Industry (eds Duggan, J. L.) AIP Conf. Proc. 576 (in the press).

  13. Bryant, P. J. & Johnson, K. Circular Accelerators and Storage Rings (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  14. Spreiter, Q., Seurer, M. & Toepffer, C. Relaxation in a strongly coupled particle beam. Nucl. Instrum. Methods A 364, 239–242 (1995).

    Article  CAS  Google Scholar 

  15. Seurer, M., Spreiter, Q. & Toepffer, C. in Crystalline Beams and Related Issues (eds Maletic, D. M. & Ruggiero, A. G.) 311–328 (World Scientific, Singapore, 1996).

    Google Scholar 

  16. Raizen, M. G. et al. Ionic crystals in a linear Paul trap. Phys. Rev. A 45, 6493–6501 (1992).

    Article  CAS  Google Scholar 

  17. Drewsen, M., Brodersen, C., Hornekaer, L., Hangst, J. S. & Schiffer, J. P. Large ion crystals in a linear Paul trap. Phys. Rev. Lett. 81, 2878–2881 (1998).

    Article  Google Scholar 

  18. Birkl, G., Kassner, S. & Walther, H. Multiple-shell structures of laser-cooled Mg-ions in a quadrupole storage ring. Nature 357, 310–313 (1992).

    Article  CAS  Google Scholar 

  19. Hasse, R. W. & Schiffer, J. P. The structure of the cylindrically confined Coulomb lattice. Ann. Phys. 203, 419–448 (1990).

    Article  CAS  Google Scholar 

  20. Habs, D. & Grimm, R. Crystalline ion beams. Ann. Rev. Nucl. Part. Sci. 45, 391–428 (1995).

    Article  CAS  Google Scholar 

  21. Schiffer, J. P. in Crystalline Beams and Related Issues (eds Maletic, D. M. & Ruggiero, A. G.) 217–228 (World Scientific, Singapore, 1996).

    Google Scholar 

  22. Wei, J., Okamoto, H. & Sessler, A. M. Necessary conditions for attaining a crystalline beam. Phys. Rev. Lett. 80, 2606–2609 (1998).

    Article  CAS  Google Scholar 

  23. Blümel, R. et al. Phase transitions of stored laser-cooled ions. Nature 334, 309–313 (1988).

    Article  Google Scholar 

  24. Dubin, D. H. E. First-order anharmonic correction to the free energy of a Coulomb-crystal in periodic boundary conditions. Phys. Rev. A 42, 4972–4982 (1990).

    Article  CAS  Google Scholar 

  25. Schiffer, J. P., Drewsen, M., Hangst, J. & Hornekaer, L. Temperature, ordering, and equilibrium with time-dependent forces. Proc. Natl Acad. Sci. USA 97, 10697–10700 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Neugart for technical support, and P. Kienle and H. Walther for discussions. The work was partially funded by the Deutsche Forschungsgemeinschaft and the Maier Leibmitz Labor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Schramm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schätz, T., Schramm, U. & Habs, D. Crystalline ion beams. Nature 412, 717–720 (2001). https://doi.org/10.1038/35089045

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35089045

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing