Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Density-dependent mortality in an oceanic copepod population

Abstract

Planktonic copepods are primary consumers in the ocean and are perhaps the most numerous metazoans on earth. Secondary production by these zooplankton supports most food webs of the open sea, directly affecting pelagic fish populations and the biological pump of carbon into the deep ocean. Models of marine ecosystems are quite sensitive to the formulation of the term for zooplankton mortality1,2,3,4, although there are few data available to constrain mortality rates in such models. Here we present the first evidence for nonlinear, density-dependent mortality rates of open-ocean zooplankton. A high-frequency time series reveals that per capita mortality rates of eggs of Calanus finmarchicus Gunnerus are a function of the abundance of adult females and juveniles. The temporal dynamics of zooplankton populations can be influenced as much by time-dependent mortality rates as by variations in ‘bottom up’ forcing. The functional form and rates chosen for zooplankton mortality in ecosystem models can alter the balance of pelagic ecosystems1,2,3, modify elemental fluxes into the ocean's interior5, and modulate interannual variability in pelagic ecosystems6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spring population growth of the copepod Calanus finmarchicus at ocean station M, in the Norwegian Sea (centred on 66° N, 2° E ).
Figure 2: Instantaneous rates of egg mortality (a) (me; d-1), birth (b) (b; d-1) and their difference (c) (b - me) at ocean station M, with estimated 95% confidence intervals (dotted lines).
Figure 3: Dependence of embryonic mortality rates on the abundance of Calanus finmarchicus adult females and juvenile stage C5 at ocean station M.

Similar content being viewed by others

References

  1. Steele, J. H. & Henderson, E. W. The role of predation in plankton models. J. Plank. Res. 14, 157–172 (1992).

    Article  Google Scholar 

  2. Fasham, M. J. R. Variation in the seasonal cycle of biological production in subarctic oceans: a model sensitivity analysis. Deep-Sea Res. 42, 1111–1149 (1995).

    Article  CAS  Google Scholar 

  3. Edwards, A. M. & Yool, A. The role of higher predation in plankton population models. J. Plank. Res. 22, 1085–1112 (2000).

    Article  Google Scholar 

  4. Carlotti, F., Giske, J. & Werner, F. Zooplankton Methodology Manual (eds Harris, R. P., Wiebe, P. H., Lenz, J., Skjoldal, H. R. & Huntley, M.) 571–667 (Academic, San Diego, 2000).

    Book  Google Scholar 

  5. Fasham, M. J. R. The Global Carbon Cycle (ed. Heinmann, M.) 457–504 (Springer, New York, 1993).

    Book  Google Scholar 

  6. Li, M., Gargett, A. & Denman, K. What determines seasonal and interannual variability of phytoplankton and zooplankton in strongly estuarine systems? Application to the semi-enclosed estuary of Strait of Georgia and Juan de Fuca Strait. Estuar. Coast. Shelf Sci. 50, 467–488 (2000).

    Article  Google Scholar 

  7. Heath, M. R. The ascent migration of Calanus finmarchicus from overwintering depths in the Faroe–Shetland Channel. Fish. Oceanogr. (Suppl. 1) 8, 84–99 (1999).

    Article  Google Scholar 

  8. Richardson, K., Jonasdottir, S. H., Hay, S. J. & Christoffersen, A. Calanus finmarchicus egg production and food availability in the Faroe–Shetland channel and northern North Sea: October–March. Fish. Oceanogr. (Suppl. 1) 8, 153–162 (1999).

    Article  Google Scholar 

  9. Niehoff, B. et al. A high frequency time series at Weathership M, Norwegian Sea, during the 1997 spring bloom: the reproductive biology of Calanus finmarchicus. Mar. Ecol. Prog. Ser. 176, 81–91 (1999).

    Article  Google Scholar 

  10. Irigoien, X. et al. A high frequency time series at weathership M, Norwegian Sea, during the 1997 spring bloom: feeding of adult female Calanus finmarchicus. Mar. Ecol. Prog. Ser. 172, 127–137 (1998).

    Article  Google Scholar 

  11. Meyer-Harms, B., Irigoien, X, Head, R. & Harris, R. Selective feeding on natural phytoplankton by Calanus finmarchicus before, during, and after the 1997 spring bloom in the Norwegian sea. Limnol. Oceanogr. 44, 154–165 (1999).

    Article  Google Scholar 

  12. Wood, S. N. Obtaining birth and mortality patterns from structured population trajectories. Ecol. Monogr. 64, 23–44 (1994).

    Article  CAS  Google Scholar 

  13. Aksnes, D. L., Miller, C. B., Ohman, M. D. & Wood, S. N. Estimation techniques used in studies of copepod population dynamics—a review of underlying assumptions. Sarsia 82, 279–296 (1997).

    Article  Google Scholar 

  14. Campbell, R. G., Wagner, M. M., Teegarden, G. J., Boudreau, C. A. & Durbin, E. G. Growth and development rates of the copepod Calanus finmarchicus reared in the laboratory. Mar. Ecol. Progr. Ser. (in the press).

  15. Solow, A. R. & Steele, J. H. Scales of plankton patchiness: biomass versus demography. J. Plank. Res. 17, 1669–1677 (1995).

    Article  Google Scholar 

  16. Hainbucher, D. & Backhaus, J. O. Circulation of the eastern North Atlantic and north-west European continental shelf—a hydrodynamic modelling study. Fish. Oceanogr. (Suppl. 1) 8, 1–12 (1999).

    Article  Google Scholar 

  17. Miralto, A. et al. The insidious effect of diatoms on copepod reproduction. Nature 402, 173–176 (1999).

    Article  CAS  Google Scholar 

  18. Hirche, H.-J., Brey, T. & Niehoff, B. A high frequency time series at Weathership M, Norwegian Sea: population dynamics of Calanus finmarchicus. Mar. Ecol. Prog. Ser. (in the press).

  19. Ohman, M. D. & Runge, J. A. Sustained fecundity when phytoplankton resources are in short supply: omnivory by Calanus finmarchicus in the Gulf of St. Lawrence. Limnol. Oceanogr. 39, 21–36 (1994).

    Article  CAS  Google Scholar 

  20. Rothschild, B. J. & Osborn, T. R. Small-scale turbulence and plankton contact rates. J. Plank. Res. 10, 465–474 (1988).

    Article  Google Scholar 

  21. Landry, M. R. Switching between herbivory and carnivory by the planktonic marine copepod Calanus pacificus. Mar. Biol. 65, 77–82 (1981).

    Article  Google Scholar 

  22. Landry, M. R. Population dynamics and production of a planktonic marine copepod, Acartia clausii, in a small temperate lagoon on an Juan Island, Washington. Int. Rev. Ges. Hydrobiol. 63, 77–119 (1978).

    Article  Google Scholar 

  23. Uye, S. I. & Liang, D. Copepods attain high abundance, biomass and production in the absence of large predators but suffer cannibalistic loss. J. Mar. Sys. 15, 495–501 (1998).

    Article  Google Scholar 

  24. Peterson, W. T. & Kimmerer, W. J. Processes controlling recruitment of the marine calanoid copepod Temora longicornis in Long Island Sound: egg production, egg mortality, and cohort survival rates. Limnol. Oceanogr. 39, 1594–1605 (1994).

    Article  Google Scholar 

  25. Daan, R., Gonzales, S. R. & Klein Breteler, W. C. M. Cannibalism in omnivorous calanoid copepods. Mar. Ecol. Prog. Ser. 47, 45–54 (1989).

    Article  Google Scholar 

  26. Ohman, M. D., Durbin, E. G. & Runge, J. A. Density-dependence of instantaneous mortality rates of Calanus finmarchicus on Georges Bank. EOS Trans. Am. Geophys. Union 79, OS155 (1998).

    Google Scholar 

  27. Planque, B. & Taylor, A. H. Long-term changes in zooplankton and the climate of the North Atlantic. ICES J. Mar. Sci. 55, 644–654 (1998).

    Article  Google Scholar 

  28. Lynch, D. R., Gentleman, W. C., McGillicuddy, D. J. Jr & Davis, C. S. Biological/physical simulations of Calanus finmarchicus population dynamics in the Gulf of Maine. Mar. Ecol. Prog. Ser. 169, 189–210 (1998).

    Article  Google Scholar 

  29. Cowan, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).

    Article  Google Scholar 

  30. Heath, M. R. et al. Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus. Fish Oceanogr. (Suppl. 1) 8, 163–176 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the late M. M. Mullin for his scientific insights, the captain and the crew as well as the scientists (X. Irigoien, U. Klenke, R. Head) on the vessel Polarfront for their support, and the Institute for Marine Research (Bergen, Norway), which provided logistical help. B. Niehoff provided egg-production rates, S. Jaklin and E. Mizdalski helped with analysing the samples and A. De Robertis generated bootstrap confidence intervals. This work was supported by funding from the European Commission through the TASC project and by the National Science Foundation and the National Oceanic and Atmospheric Administration through US GLOBEC (Global Ocean Ecosystem Dynamics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Ohman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohman, M., Hirche, HJ. Density-dependent mortality in an oceanic copepod population. Nature 412, 638–641 (2001). https://doi.org/10.1038/35088068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35088068

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing