Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean


Fixed nitrogen (N) often limits the growth of organisms in terrestrial and aquatic biomes1,2, and N availability has been important in controlling the CO2 balance of modern and ancient oceans3,4. The fixation of atmospheric dinitrogen gas (N2) to ammonia is catalysed by nitrogenase and provides a fixed N for N-limited environments2,5. The filamentous cyanobacterium Trichodesmium has been assumed to be the predominant oceanic N2-fixing microorganism since the discovery of N2 fixation in Trichodesmium in 1961 (ref. 6). Attention has recently focused on oceanic N2 fixation because nitrogen availability is generally limiting in many oceans, and attempts to constrain the global atmosphere–ocean fluxes of CO2 are based on basin-scale N balances7,8,9. Biogeochemical studies and models have suggested that total N2-fixation rates may be substantially greater than previously believed7,8 but cannot be reconciled with observed Trichodesmium abundances8,9. It is curious that there are so few known N2-fixing microorganisms in oligotrophic oceans when it is clearly ecologically advantageous. Here we show that there are unicellular cyanobacteria in the open ocean that are expressing nitrogenase, and are abundant enough to potentially have a significant role in N dynamics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of nifH genes in water samples collected at the Hawaii Ocean Time-series station ALOHA in May 2000 (HOT cruise 115).
Figure 2: Phylogenetic tree showing the relationships among representative cyanobacterial nifH gene sequences.
Figure 3: Photomicrographs of marine N2-fixing unicellular cyanobacteria.


  1. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).

    Article  Google Scholar 

  2. Howarth, R. W. & Marino, R. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol. Oceanogr. 33, 688–701 (1988).

    CAS  Google Scholar 

  3. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).

    Article  CAS  Google Scholar 

  4. Haug, G. H. et al. Glacial/interglacial variations in production and nitrogen fixation in the Cariaco Basin during the last 580 kyr. Paleoceanography 13, 427–432 (1998).

    Article  Google Scholar 

  5. Paerl, H. W. Physiological ecology and regulation of N2 fixation in natural waters. Adv. Microb. Ecol. 8, 305–344 (1990).

    Article  Google Scholar 

  6. Dugdale, R. C., Menzel, D. W. & Ryther, J. H. Nitrogen fixation in the Sargasso Sea. Deep-Sea Res. 7, 298–300 (1961).

    Google Scholar 

  7. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles 11, 235–266 (1997).

    Article  CAS  Google Scholar 

  8. Michaels, A. F. et al. Inputs, losses and transformations of nitrogen and phophorus in the pelagic North Atlantic Ocean. Biogeochemistry 35, 181–226 (1996).

    Article  CAS  Google Scholar 

  9. Lipschultz, F. & Owens, N. J. P. An assessment of nitrogen fixation as a source of nitrogen to the North Atlantic Ocean. Biogeochemistry 35, 261–274 (1996).

    Article  CAS  Google Scholar 

  10. Zehr, J. P., Mellon, M. T. & Zani, S. New nitrogen fixing microorganisms detected in oligotrophic oceans by the amplification of nitrogenase (nifH) genes. Appl. Environ. Microbiol. 64, 3444–3450 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zehr, J. P., Carpenter, E. J. & Villareal, T. A. New perspectives on nitrogen-fixing microorganisms in tropical and subtropical oceans. Trends Microbiol. 8, 68–73 (2000).

    Article  CAS  Google Scholar 

  12. Chen, Y. -B., Dominic, B., Mellon, M. T. & Zehr, J. P. Circadian rhythm of nitrogenase gene expression in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. Strain IMS 101. J. Bacteriol. 180, 3598–3605 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Beja, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).

    Article  CAS  Google Scholar 

  14. Kolber, Z. S., Van Dover, C. L., Niederman, R. A. & Falkowski, P. G. Bacterial photosynthesis in surface waters of the open ocean. Nature 407, 177–179 (2000).

    Article  CAS  Google Scholar 

  15. Reddy, K. J., Haskell, J. B., Sherman, D. M. & Sherman, L. A. Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J. Bacteriol. 175, 1284–1292 (1993).

    Article  CAS  Google Scholar 

  16. Waterbury, J. B. & Rippka, R. in Bergey's Manual of Systematic Bacteriology Vol. 3 (ed. Staley, J. T.) 1728–1746 (Williams & Wilkins, Baltimore, 1989).

    Google Scholar 

  17. Neveux, J., Lantoine, F., Vaulot, D., Marie, D. & Blanchot, J. Phycoerythrins in the southern tropical and equatorial Pacific Ocean: evidence for new cyanobacterial types. J. Geophys. Res. 104, 3311–3321 (1999).

    Article  CAS  Google Scholar 

  18. Campbell, L., Liu, H., Nolla, H. A. & Vaulot, D. Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at station ALOHA during the 1991–1994 ENSO event. Deep-Sea Res. I 44, 167–192 (1997).

    Article  CAS  Google Scholar 

  19. Brass, S. et al. Utilization of light for nitrogen fixation by a new Synechocystis strain is extended by its low photosynthetic efficiency. Appl. Environ. Microbiol. 60, 2575–2583 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wasmund, N., Voss, M. & Lochte, K. Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation. Mar. Ecol. Progr. Ser. 214, 1–14 (2001).

    Article  CAS  Google Scholar 

  21. Letelier, R. M. & Karl, D. M. Role of Trichodesmium spp. in the productivity of the subtropical North Pacific Ocean. Mar. Ecol. Progr. Ser. 133, 263–273 (1996).

    Article  Google Scholar 

  22. Lin, S., Henze, S. & Carpenter, E. J. Whole-cell immunolocalization of nitrogenase in marine diazotrophic cyanobacteria, Trichodesmium spp. Appl. Environ. Microbiol. 64, 3052–3058 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Karl, D. et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388, 533–538 (1997).

    Article  CAS  Google Scholar 

  24. Letelier, R. M. et al. Temporal variability of phytoplankton community structure based on pigment analysis. Limnol. Oceanogr. 38, 1420–1437 (1993).

    Article  Google Scholar 

  25. Hawser, S. P., O'Neil, J. M., Roman, M. R. & Codd, G. A. Toxicity of blooms of the cyanobacterium Trichodesmium to zooplankton. J. Appl. Phys. 4, 79–86 (1992).

    Google Scholar 

  26. Karl, D. Comment: a new source of ‘new’ nitrogen in the sea. Trends Microbiol. 8, 301 (2000).

    Article  CAS  Google Scholar 

  27. Zani, S., Mellon, M. T., Collier, J. L. & Zehr, J. P. Expression of nifH genes in natural microbial assemblages in Lake George, NY detected with RT-PCR. Appl. Environ. Microbiol. 66, 3119–3124 (2000).

    Article  CAS  Google Scholar 

  28. Van de Peer, Y. & De Wachter, R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Applic. Biosci. 10, 569–570 (1994).

    CAS  Google Scholar 

Download references


We thank the crews and participants of the HOT programme, especially L. Tupas and J. Dore for field support. We also thank L. Campbell for providing flow cytometer data. This work was supported by NSF Division of Ocean Sciences grants to J.P.Z., J.P.M. and D.M.K.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jonathan P. Zehr.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zehr, J., Waterbury, J., Turner, P. et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412, 635–638 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing