Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Normal faulting in central Tibet since at least 13.5 Myr ago


Tectonic models for the evolution of the Tibetan plateau interpret observed east–west thinning of the upper crust to be the result of either increased potential energy of elevated crust1 or geodynamic processes that may be unrelated to plateau formation2,3,4,5,6. A key piece of information needed to evaluate these models is the timing of deformation within the plateau. The onset of normal faulting has been estimated to have commenced in southern Tibet between about 14 Myr ago7 and about 8 Myr ago8 and, in central Tibet, about 4 Myr ago9. Here, however, we report a minimum age of approximately 13.5 Myr for the onset of graben formation in central Tibet, based on mineralization ages determined with Rb–Sr and 40Ar–39Ar data that post-date a major graben-bounding normal fault. These data, along with evidence for prolonged activity of normal faulting in this and other Tibetan grabens, support models that relate normal faulting to processes occurring beneath the plateau. Thinning of the upper crust is most plausibly the result of potential-energy increases resulting from spatially and temporally heterogeneous changes in thermal structure and density distribution within the crust and upper mantle beneath Tibet. This is supported by recent geophysical and geological data10,11,12,13,14,15,16,17, which indicate that spatial heterogeneity exists in both the Tibetan crust and lithospheric mantle.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geological setting of the studied normal fault mineralization.
Figure 2: Results of isotope dating.


  1. Molnar, P. & Tapponnier, P. Active tectonics of Tibet. J. Geophys. Res. 83, 5361–5375 (1978).

    Article  Google Scholar 

  2. Yin, A. & Harrison, T. M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. Lett. 28, 211–280 (2000).

    Article  CAS  Google Scholar 

  3. Armijo, R., Tapponnier, P. & Han, T. Late Cenozoic strike-slip faulting in southern Tibet. J. Geophys. Res. 94, 2787–2838 (1989).

    Article  Google Scholar 

  4. Klootwijk, C. T., Conaghan, P. J. & Powell, C. M. The Himalayan arc: large-scale continental subduction, oroclinal bending and back-arc spreading. Earth Planet. Sci. Lett. 75, 167–183 (1985).

    Article  Google Scholar 

  5. McCaffrey, R. & Nabelek, J. Role of oblique convergence in the active deformation of the Himalayas and southern Tibet plateau. Geology 26, 691–694 (1998).

    Article  Google Scholar 

  6. Ratschbacher, L., Frisch, W., Lui, G. & Chen, C. Distributed deformation in southern and western Tibet during and after the India-Asia collision. J. Geophys. Res. 99, 19917–19945 (1994).

    Article  Google Scholar 

  7. Coleman, M. & Hodges, K. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature 374, 49–52 (1995).

    Article  CAS  Google Scholar 

  8. Harrison, T. M., Copeland, P., Kidd, W. S. F. & Lovera, O. M. Activation of the Nyainqentanghla Shear Zone: Implications for uplift of the southern Tibetan Plateau. Tectonics 14, 658–676 (1995).

    Article  Google Scholar 

  9. Yin, A. et al. Evidence for significant Late Cenozoic E-W extension in North Tibet. Geology 27, 787–790 (1999).

    Article  Google Scholar 

  10. Nelson, K. D. et al. An INDEPTH view of the structure of the lithosphere beneath southern Tibet. Science 274, 1684–1688 (1996).

    Article  CAS  Google Scholar 

  11. Owens, T. J. & Zandt, G. Implications of crustal property variations for models of Tibetan plateau evolution. Nature 387, 37–43 (1997).

    Article  CAS  Google Scholar 

  12. Kosarev, G. et al. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science 283, 1306–1309 (1999).

    Article  CAS  Google Scholar 

  13. Hacker, B. R. et al. Hot and dry deep crustal xenoliths from Tibet. Science 287, 2463–2466 (2000).

    Article  CAS  Google Scholar 

  14. Huang, W.-C. et al. Seismic polarization anisotropy beneath the central Tibetan Plateau. J. Geophys. Res. 105, 27979–27989 (2000).

    Article  Google Scholar 

  15. Wei, W. et al. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science 292, 716–718 (2001).

    Article  CAS  Google Scholar 

  16. Zhao, W. et al. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophys. J. Int. 145, 486–498 (2001).

    Article  Google Scholar 

  17. Rodgers, A. J. & Schwartz, S. Y. Lithospheric structure of the Qiangtang Terrane, northern Tibetan Plateau, from complete regional waveform modeling: Evidence for partial melt. J. Geophys. Res. 103, 7137–7152 (1998).

    Article  Google Scholar 

  18. England, P. & Searle, M. The Cretaceous-Tertiary deformation of the Lhasa Block and its implications for crustal thickening in Tibet. Tectonics 5, 1–14 (1986).

    Article  Google Scholar 

  19. England, P. C. & Houseman, G. A. Extension during continental convergence, with application to the Tibetan plateau. J. Geophys. Res. 94, 17561–17579 (1989).

    Article  Google Scholar 

  20. Harrison, T. M., Copeland, P., Kidd, W. S. F. & Yin, A. Raising Tibet. Science 255, 1663–1670 (1992).

    Article  CAS  Google Scholar 

  21. Garzione, C. N., Dettman, D. L., Quade, J., DeCelles, P. G. & Butler, R. F. High times on the Tibetan Plateau: Paleoelevation of the Thakkola graben, Nepal. Geology 28, 339–342 (2000).

    Article  Google Scholar 

  22. Williams, H., Turner, S., Kelley, S. & Harris, N. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology 29, 339–342 (2001).

    Article  CAS  Google Scholar 

  23. Molnar, P. & Lyon-Caen, H. Fault plane solutions of earthquakes and active tectonics of the northern and eastern parts of the Tibetan Plateau. Geophys. J. Int. 99, 123–153 (1989).

    Article  Google Scholar 

  24. Hodges, K. V. et al. Simultaneous Miocene extension and shortening in the Himalayan orogen. Science 258, 1466–1470 (1992).

    Article  CAS  Google Scholar 

  25. Hurtado, J. M., Hodges, K. V. & Whipple, K. X. Neotectonics of the Thakkola graben and implications for recent activity on the South Tibetan fault system in the central Nepal Himalaya. Bull. Geol. Soc. Am. 113, 222–240 (2001).

    Article  Google Scholar 

  26. Zhang, Y., Vergely, P. & Mercier, J. L. Pliocene-Quaternary faulting pattern and left-slip propagation tectonics in North China. Episodes 22, 84–88 (1999).

    Google Scholar 

  27. Logatchev, N. A. & Zorin, Y. A. Evidence and causes of the two-stage development of the Baikal rift. Tectonophysics 143, 225–234 (1987).

    Article  Google Scholar 

  28. Kroon, D., Steens, T. & Troelstra, S. R. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc. ODP Sci. Res. 116, 257–263 (1991).

    Google Scholar 

  29. Quade, J., Cerling, T. E. & Bowman, J. R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166 (1989).

    Article  Google Scholar 

  30. An, Z., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001).

    Article  CAS  Google Scholar 

Download references


We thank E. Gnos, M. Strecker, W. Kidd, A. Yin and M. Edwards for discussions, and P. Molnar for comments and suggestions. This work was supported by Deutsche Forschungsgemeinschaft, the US NSF, and the Chinese Academy of Geological Sciences.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Peter M. Blisniuk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blisniuk, P., Hacker, B., Glodny, J. et al. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature 412, 628–632 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing