Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

History of trace gases in presolar diamonds inferred from ion-implantation experiments

Abstract

Diamond grains are the most abundant presolar grains found in primitive meteorites1,2,3. They formed before the Solar System, and therefore provide a record of nuclear and chemical processes in stars and in the interstellar medium1,2,3. Their origins are inferred from the unusual isotopic compositions of trace elements—mainly xenon1,2,3,4—which suggest that they came from supernovae. But the exact nature of the sources has been enigmatic, as has the method by which noble gases were incorporated into the grains. One observation is that different isotopic components are released at different temperatures when the grains are heated, and it has been suggested that these components have different origins. Here we report results of a laboratory study that shows that ion implantation (previously suggested on other grounds5,6) is a viable mechanism for trapping noble gases. Moreover, we find that ion implantation of a single isotopic composition can produce both low- and high-temperature release peaks from the same grains. We conclude that both isotopically normal and anomalous gases may have been implanted by multiple events separated in space and/or time, with thermal processing producing an apparent enrichment of the anomalous component in the high-temperature release peak. The previous assumption that the low- and high-temperature components were not correlated may therefore have led to an overestimate of the abundance of anomalous argon and krypton, while obscuring an enhancement of the light—in addition to the heavy—krypton isotopes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal release patterns of noble gases from diamonds.
Figure 2: Thermal release and isotopic variation of implanted Ar, Kr and Xe.

Similar content being viewed by others

References

  1. Anders, E. & Zinner, E. Interstellar grains in primitive meteorites: diamond, silicon carbide, and graphite. Meteoritics 28, 490–514 (1993).

    Article  CAS  Google Scholar 

  2. Ott, U. Interstellar grains in meteorites. Nature 364, 25–33 (1993).

    Article  CAS  Google Scholar 

  3. Zinner, E. in Astrophysical Implications of the Laboratory Study of Presolar Materials (eds Bernatowicz, T. J. & Zinner, E.) 3–26 (American Institute of Physics, Woodbury, New York, 1997).

    Book  Google Scholar 

  4. Huss, G. R. & Lewis, R. S. Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins. Meteoritics 29, 791–810 (1994).

    Article  Google Scholar 

  5. Lewis, R. S., Tang, M., Wacker, J. G., Anders, E. & Steel, E. Interstellar diamonds in meteorites. Nature 326, 160–162 (1987).

    Article  CAS  Google Scholar 

  6. Verchovsky, A. B. et al. C, N, and noble gas isotopes in grain size separates of presolar diamonds from Efremovka. Science 281, 1165–1168 (1998).

    Article  CAS  Google Scholar 

  7. Daulton, T. L., Eisenhour, D. D., Bernatowicz, T. J., Lewis, R. S. & Buseck, P. R. Genesis of presolar diamonds: comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim. Cosmochim. Acta 60, 4853–4872 (1996).

    Article  CAS  Google Scholar 

  8. Tielens, A. G. G. M., Seab, C. G., Hollenbach, D. J. & McKee, C. F. Shock processing of interstellar dust: diamonds in the sky. Astrophys. J. 319, L109–L113 (1987).

    Article  CAS  Google Scholar 

  9. Nuth, J. A. III & Allen, J. E. Jr Supernovae as sources of interstellar diamonds. Astrophys. Space Sci. 196, 117–123 (1992).

    Article  Google Scholar 

  10. Ozima, M. & Mochizuki, K. Origin of nanodiamonds in primitive chondrites: (1) Theory. Meteoritics 28, 416–417 (1993).

    Google Scholar 

  11. Matsuda, J. -I., Kusumi, A., Yajima, H. & Syono, Y. Noble gas studies in diamonds synthesized by shock loading in the laboratory and their implications on the origin of diamonds in ureilites. Geochim. Cosmochim. Acta 59, 4939–4949 (1995).

    Article  CAS  Google Scholar 

  12. Matsuda, J. -I., Fukunaga, K. & Ito, K. Noble gas studies in vapor-growth diamonds: comparison with shock-produced diamonds and the origin of diamonds in ureilites. Geochim. Cosmochim. Acta 55, 2011–2023 (1991).

    Article  CAS  Google Scholar 

  13. Frick, U., Mack, R. & Chang, S. Noble gas trapping and fractionation during synthesis of carbonaceous matter. Proc. Lunar. Planet. Sci. Conf. X, 1961–1973 (1979).

    Google Scholar 

  14. Bernatowicz, T. J. & Fahey, A. J. Xe isotopic fractionation in a cathodeless glow discharge. Geochim. Cosmochim. Acta 50, 445–452 (1986).

    Article  CAS  Google Scholar 

  15. Weigel, A. et al. Noble gas systematics in planetary atmospheres: Simulation of fractionation mechanisms using ion implantation. Lunar Planet. Sci. [CD-ROM] XXIX, abstr. 1900 (1998).

    Google Scholar 

  16. Bernatowicz, T. J. & Hagee, B. E. Isotopic fractionation of Kr and Xe implanted in solids at very low energies. Geochim. Cosmochim. Acta 51, 1599–1611 (1987).

    Article  CAS  Google Scholar 

  17. Ponganis, K. V., Graf, T. & Marti, K. Isotopic fractionation in low-energy ion implantation. J. Geophys. Res. 102, 19335–19343 (1997).

    Article  CAS  Google Scholar 

  18. Futagami, T., Ozima, M., Nagai, S. & Aoki, Y. Experiments on thermal release of implanted noble gases from minerals and their implications for noble gases in lunar soil grains. Geochim. Cosmochim. Acta 57, 3177–3194 (1993).

    Article  CAS  Google Scholar 

  19. Koscheev, A. P., Gromov, M. D., Herrmann, S. & Ott, U. Trapping and isotope fractionation of noble gases in synthetic analog of presolar diamond grains. Lunar Planet. Sci. [CD-ROM] XXXI, abstr. 1551 (2000).

    Google Scholar 

  20. Verchovsky, A. B., Wright, I. P., Fisenko, A. V., Semjonova, L. F. & Pillinger, C. T. Ion implantation into presolar diamonds: experimental simulation. J. Conf. Abstr. [CD-ROM] 5, abstr. 1050 (2000).

    Google Scholar 

  21. Lyamkin, A. I. et al. Production of diamonds from explosives. Sov. Phys. Dokl. 33, 705–706 (1988).

    Google Scholar 

  22. Koscheev, A. P. & Ott, U. Mechanism of noble gas release during pyrolysis of nanodiamond grains. Meteorit. Planet. Sci. 35, A92 (2000).

    Google Scholar 

  23. Clayton, D. D. Origin of heavy xenon in meteoritic diamonds. Astrophys. J. 340, 613–619 (1989).

    Article  CAS  Google Scholar 

  24. Howard, W. M., Meyer, B. S. & Clayton, D. D. Heavy-element abundances from a neutron burst that produces Xe-H. Meteoritics 27, 404–412 (1992).

    Article  CAS  Google Scholar 

  25. Ott, U. Interstellar diamond xenon and timescales of supernova ejecta. Astrophys. J. 463, 344–348 (1996).

    Article  CAS  Google Scholar 

  26. Guillois, O., Ledoux, G. & Reynaud, C. Diamond infrared emission bands in circumstellar media. Astrophys. J. 521, L133–L136 (1999).

    Article  CAS  Google Scholar 

  27. Frick, U. Anomalous krypton in the Allende meteorite. Proc. Lunar Sci. Conf. VIII, 273–292 (1977).

    Google Scholar 

  28. Huss, G. R., Ott, U. & Koscheev, A. P. Implications of ion-implantation experiments for understanding noble gases in presolar diamonds. Meteorit. Planet. Sci. 35, A79–A80 (2000).

    Google Scholar 

  29. Ziegler, J. F., Biersack, J. P. & Littmark, U. The Stopping Range of Ions in Solids (Pergamon, Tarrytown, New York, 1985).

    Google Scholar 

  30. Schelhaas, N., Ott, U. & Begemann, F. Trapped noble gases in unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta 54, 2869–2882 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Herrmann for assisting with the noble-gas measurements, G.R. Huss and A.B. Verchovsky for discussions, and R.S. Lewis and A.P. Meshik for comments on the manuscript. This work was partially supported by the Russian Foundation of Basic Science and by the German DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koscheev, A., Gromov, M., Mohapatra, R. et al. History of trace gases in presolar diamonds inferred from ion-implantation experiments. Nature 412, 615–617 (2001). https://doi.org/10.1038/35088009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35088009

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing