Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors


Coupling between electrons and phonons (lattice vibrations) drives the formation of the electron pairs responsible for conventional superconductivity1. The lack of direct evidence for electron–phonon coupling in the electron dynamics of the high-transition-temperature superconductors has driven an intensive search for an alternative mechanism. A coupling of an electron with a phonon would result in an abrupt change of its velocity and scattering rate near the phonon energy. Here we use angle-resolved photoemission spectroscopy to probe electron dynamics—velocity and scattering rate—for three different families of copper oxide superconductors. We see in all of these materials an abrupt change of electron velocity at 50–80 meV, which we cannot explain by any known process other than to invoke coupling with the phonons associated with the movement of the oxygen atoms. This suggests that electron–phonon coupling strongly influences the electron dynamics in the high-temperature superconductors, and must therefore be included in any microscopic theory of superconductivity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 3: Comparison of the observed effect in photoemission, tunnelling and neutron data.
Figure 1: Ubiquity of a sudden change (‘kink’) in the dispersion.
Figure 2: Double-peak features in the photoemission spectra due to strong electron–phonon interaction.
Figure 4: Momentum dependence of the velocity ratio above and below the critical temperature.


  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Bogdanov, P. V. et al. Evidence for an energy scale for quasiparticle dispersion in Bi2Sr2CaCu2O8. Phys. Rev. Lett. 85, 2581–2584 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Kaminski, A. et al. Renormalization of spectral lineshape and dispersion below Tc in Bi2Sr2CaCu2O8+δ. Preprint cond-mat/0004482 at 〈〉 (2000).

  4. Valla, T. et al. Evidence for quantum critical behavior in the optimally doped cuprate Bi2Sr2CaCu2O8+δ. Science 285, 2110–2113 (1999).

    Article  CAS  Google Scholar 

  5. Zhou, X. J. et al. Dual nature of the electronic structure of the stripe phase. Phys. Rev. Lett. 86, 5578–5581 (2001).

    Article  ADS  CAS  Google Scholar 

  6. Eschrig, M. & Norman, M. R. Neutron resonance: modeling photoemission and tunneling data in the superconducting state of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 85, 3261–3264 (2000).

    Article  ADS  CAS  Google Scholar 

  7. He, H. et al. Resonant spin excitation in an overdoped high temperature superconductor. Preprint cond-mat/0002013 at 〈〉 (2000).

  8. McQueeney, R. J. et al. Anomalous dispersion of LO phonons in La1.85Sr0.15CuO4 at low temperatures. Phys. Rev. Lett. 82, 628–631 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Petrov, Y. et al. Phonon signature of charge inhomogeneity in high temperature superconductors YBa2Cu3O6+x. Preprint cond-mat/0003414 at 〈〉 (2000).

  10. Bianconi, A. et al. Determination of local lattice distortions in the CuO2 plane of La1.85Sr0.15CuO4. Phys. Rev. Lett. 76, 3412–3415 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Hengsberger, M., Purdie, D., Segovia, P., Garnier, M. & Baer, Y. Photoemission study of a strongly coupled electron-phonon system. Phys. Rev. Lett. 83, 592–595 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Lashell, S., Jensen, E. & Balasubramanian, T. Nonquasiparticle structure in the photoemission spectra from the Be(0001) surface and determination of the electron self energy. Phys. Rev. B 61, 2371–2374 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Scalapino, D. J. in Superconductivity (ed. Parks, R. D.) 449 (Marcel Dekker, New York, 1969)

    Google Scholar 

  14. Puchkov, A. V., Basov, D. N. & Timusk, T. The pseudogap state in high Tc superconductors: An infrared study. J. Phys. Condens. Matter 8, 10049–10082 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Feng, D. L. et al. Bilayer splitting in the electronic structure of heavily overdoped Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 86, 5550–5553 (2001).

    Article  ADS  CAS  Google Scholar 

  16. Chuang, Y.-D. et al. Doubling of the bands in overdoped Bi2Sr2CaCu2O8+δ–probable evidence for c-axis bilayer coupling. Preprint cond-mat/0102386 at 〈〉 (2000).

  17. Campuzano, J. C. et al. Electronic spectra and their relation to the (π, π) collective mode in high-T c superconductors. Phys. Rev. Lett. 83, 3709–3712 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Varma, C. M., Littlewood, P. B., Schmitt–Rink, S., Abrahams, E. & Ruckenstein, A. E. Phenomenology of the normal state of Cu-O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Johnson, P. D. et al. On the doping and temperature dependence of the mass enhancement observed in the cuprate Bi2212. Preprint cond-mat/0102260 at 〈〉 (2001).

  20. Fong, H. F. et al. Polarized and unpolarized neutron scattering study of the dynamic spin susceptibility in YBa2Cu3O7. Phys. Rev. B 54, 6708–6720 (1996).

    Article  CAS  Google Scholar 

  21. Carbotte, J. P. et al. Coupling strength of charge carriers to spin fluctuations in high-temperature superconductors. Nature 401, 354–356 (1996).

    Article  ADS  Google Scholar 

  22. Takagi, H. et al. Systematic evolution of temperature-dependent resistivity in La2-xSrxCuO4. Phys. Rev. Lett. 69, 2975–2978 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Allen, P. B. Anomalous versus conventional low energy properties of cuprate superconductors. Comments Condens. Matter Phys. 15, 327–353 (1992).

    CAS  Google Scholar 

  24. Gunnarsson, O. Superconductivity in fullerides. Rev. Mod. Phys. 69, 575–606 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Batlogg, B. et al. Normal-state phase-diagram of (La, Sr)2CuO4 from charge and spin dynamics. Physica C 235, 130–133 (1994).

    Article  ADS  Google Scholar 

  26. Kulic, M. L. Interplay of electron-phonon interaction and strong correlations: the possible way to high-temperature superconductivity. Phys. Rep. 338, 1–264 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Renner, C. H. et al. Pseudogap precursor of the superconducting gap in under- and overdoped Bi2Sr2CaCu2O8. Phys. Rev. Lett. 80, 149–152 (1998); Observation of the low temperature pseudogap in the vortex core of Bi2Sr2CaCu2O8. Phys. Rev. Lett. 80, 3606–3609 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Cren, T. et al. Influence of disorder on the local density of states in high-Tc superconducting thin films. Phys. Rev. Lett. 84, 147–150 (2000).

    Article  ADS  CAS  Google Scholar 

  29. De Wilde, Y. et al. Unusual strong-effects in the tunneling spectroscopy of optimally doped and overdoped Bi2Sr2CaCu2O8. Phys. Rev. Lett. 80, 153–156 (1998).

    Article  ADS  CAS  Google Scholar 

Download references


We thank N. Nagaosa, D. J. Scalapino, R. Laughlin, D.-H. Lee, S. Kivelson, D. Bonn, K. A. Muller, P. Allen, N. P. Armitage, A. Damascelli and F. Ronning for discussions. The work at ALS and SSRL was supported by the Department of Energy's Office of Basic Energy Science, Division of Materials Science. The Stanford work was also supported by the NSF. A.L. thanks the Instituto Nazionale Fisica della Materia (INFM) and the University of Rome “La Sapienza” for support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Z.-X. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanzara, A., Bogdanov, P., Zhou, X. et al. Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing