Abstract
Seismological images of the Earth's mantle reveal three distinct changes in velocity structure, at depths of 410, 660 and 2,700 km. The first two are best explained by mineral phase transformations, whereas the third—the D″ layer—probably reflects a change in chemical composition and thermal structure. Tomographic images of cold slabs in the lower mantle, the displacements of the 410-km and 660-km discontinuities around subduction zones, and the occurrence of small-scale heterogeneities in the lower mantle all indicate that subducted material penetrates the deep mantle, implying whole-mantle convection. In contrast, geochemical analyses of the basaltic products of mantle melting are frequently used to infer that mantle convection is layered, with the deeper mantle largely isolated from the upper mantle. We show that geochemical, seismological and heat-flow data are all consistent with whole-mantle convection provided that the observed heterogeneities are remnants of recycled oceanic and continental crust that make up about 16 and 0.3 per cent, respectively, of mantle volume.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Seismic evidence for a 1000 km mantle discontinuity under the Pacific
Nature Communications Open Access 27 March 2023
-
The influence of δ-(Al,Fe)OOH on seismic heterogeneities in Earth’s lower mantle
Scientific Reports Open Access 08 June 2021
-
New discovery of two seismite horizons challenges the Ries–Steinheim double-impact theory
Scientific Reports Open Access 17 December 2020
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
McDonough, W. F & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).
Newsom, H. E. in Global Earth Physics: Handbook of Physical Constants Vol. 1 (ed. Ahrens, T. J.) 159–189 (Reference Shelf Series, American Geophysical Union, Washington DC, 1995).
Allègre, C. J., Manhès, G. & Gopel, C. The age of the Earth. Geochim. Cosmochim. Acta 59, 1445–1456 (1995).
Halliday, A., Rehkämper, M., Lee, D.-C. & Yi, W. Early evolution of the Earth and Moon: New constraints from Hf-W isotope geochemistry. Earth Planet. Sci. Lett. 142, 75–89 (1996).
Kellogg, L. H., Hager, B. H. & van der Hilst, R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).
Schilling, J.-G. Iceland mantle plume: geochemical evidence along Reykjanes Ridge. Nature 242, 565–571 (1973).
Allègre, C. J., Staudacher, T. & Sarda, P. Rare-gas systematics—formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett. 81, 127–150 (1987).
Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).
Allègre, C. J., Hofmann, A. W. & O'Nions, R. K. The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996).
O'Nions, R. K. & Oxburgh, R. Heat and helium in the Earth. Nature 306, 429–431 (1983).
Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).
Lay, T., Williams, Q. & Garnero, E. J. The core–mantle boundary layer and deep Earth dynamics. Nature 392, 461–468 (1998).
Bernal, J. D. Commentary. Observatory 59, 265–269 (1936).
Ringwood, A. E. & Major, A. High-pressure transformations in pyroxenes. Earth Planet. Sci. Lett. 1, 241–245 (1966).
Liu, L. The post-spinel phase of forsterite. Nature 262, 770–772 (1976).
Ito, E. & Takahashi, E. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J. Geophys. Res. 94, 10637–10646 (1989).
Fei, Y., Saxena, S. & Navrotsky, A. Internally consistent thermodynamic data and equilibrium phase relations for compounds in the system MgO-SiO2 at high pressure and temperature. J. Geophys. Res. 95, 6915–6928 (1990).
Akaogi, M. & Akimoto, S. Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12 - Mg3Al2Si3O12 and Fe4Si4O12 - Fe3Al2Si3O12 at high pressures and temperatures. Phys. Earth Planet. Inter. 15, 90–106 (1977).
Ringwood, A. E. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55, 2083–2110 (1991).
Wood, B. J. Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth Planet. Sci. Lett. 174, 341–354 (2000).
Funamori, N., Yagi, T. & Utsumi, W. Thermoelastic properties of MgSiO3 perovskite determined by in situ X-ray observations up to 30 GPa and 2000 K. J. Geophys. Res. 101, 8257–8269 (1996).
Fiquet, G., Dewaele, A., Andrault, D., Kunz, M. & LeBihan, T. Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys. Res. Lett. 27, 21–24 (2000).
Anderson, D. L & Bass, J. D. Transition region of the Earth's upper mantle. Nature 320, 321–328 (1986).
Jeanloz, R. & Knittle, E. Density and composition of the lower mantle. Phil. Trans. R. Soc. Lond. A 328, 377–389 (1989).
Stixrude, L., Hemley, R. J., Fei, Y. & Mao, H. K. Thermoelasticity of silicate perovskite and magnesiowüstite and stratification of the Earth's mantle. Science 257, 1099–1101 (1992).
Jeffreys, H. & Bullen, K. E. Seismological Tables (British Association Seismological Investigators Committee, London, 1940).
Shearer, P. M. Global mapping of upper-mantle reflectors from long-period SS precursors. Geophys. J. Int. 115, 878–904 (1993).
Flanagan, M. P. & Shearer, P. M. Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. J. Geophys. Res. 103, 2673–2692 (1998).
van der Hilst, R., Engdahl, E., Spakman, W. & Nolet, G. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature 353, 37–43 (1991).
Grand, S. P. Mantle shear structure beneath the americas and surrounding oceans. J. Geophys. Res. 99, 11591–11621 (1994).
Masters, G., Johnson, S., Laske, G. & Bolton, H. A shear velocity model of the mantle. Phil. Trans. R. Soc. Lond. A 354, 1385–1410 (1996).
Vidale, J. E & Benz, H. M. Upper mantle seismic discontinuities and the thermal structure of subduction zones. Nature 356, 678–683 (1992).
Helffrich, G. R. & Bina, C. R. Frequency dependence of the visibility and depths of mantle seismic discontinuities. Geophys. Res. Lett. 21, 2613–2616 (1994).
Stixrude, L. Structure and sharpness of phase transitions and mantle discontinuities. J. Geophys. Res. 102, 14835–14852 (1997).
McKenzie, D. P. Speculations on the consequences and causes of plate motions. Geophys. J. R. Astron. Soc. 18, 1–32 (1969).
Bina, C. R. & Helffrich, G. Phase-transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res. 99, 15853–15860 (1994).
Collier, J. & Helffrich, G. Topography of the “410” and “660” km seismic discontinuities in the Izu-Bonin subduction zone. Geophys. Res. Lett. 24, 1535–1538 (1997).
Castle, J. C & Creager, K. C. Seismic evidence against a mantle chemical discontinuity near 660 km depth beneath Izu-Bonin. Geophys. Res. Lett. 24, 241–244 (1997).
Wicks, C. W. & Richards, M. A. A detailed map of the 660-kilometer discontinuity beneath the Izu-Bonin subduction zone. Science 261, 1424–1427 (1993).
Christensen, U. & Yuen, D. The interaction of a subducting lithospheric slab with a chemical or phase boundary. J. Geophys. Res. 89, 4389–4402 (1984).
Kincaid, C. & Olson, P. An experimental study of subduction and slab migration. J. Geophys. Res. 92, 13822–13840 (1987).
Bijwaard, H., Spakman, W. & Engdahl, E. R. Closing the gap between regional and global travel time tomography. J. Geophys. Res. 103, 30055–30078 (1998).
Davies, G. & Richards, M. Mantle convection. J. Geol. 100, 151–206 (1992).
Christensen, U. R. & Hofmann, A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 99, 19867–19884 (1994).
Hedlin, M. A. H., Shearer, P. M. & Earle, P. S. Seismic evidence for small-scale heterogeneity throughout the Earth's mantle. Nature 387, 145–150 (1997).
Vidale, J. E & Hedlin, M. A. H. Evidence for partial melt at the core-mantle boundary north of Tonga from the strong scattering of seismic waves. Nature 391, 682–685 (1998).
Castle, J. C. & Creager, K. C. Topography of the 660-km seismic discontinuity beneath Izu-Bonin: Implications for tectonic history and slab deformation. J. Geophys. Res. 103, 12511–12527 (1998).
Kaneshima, S & Helffrich, G. Dipping low-velocity layer in the mid-lower mantle: Evidence for geochemical heterogeneity. Science 283, 1888–1891 (1999).
Olson, P., Yuen, D. A. & Balsiger, D. Convective mixing and the fine structure of mantle heterogeneity. Phys. Earth Planet. Inter. 36, 291–304 (1984).
Allègre, C. J & Turcotte, D. L. Implications of a two-component marble-cake mantle. Nature 323, 123–127 (1986).
Gurnis, M. & Davies, G. F. Mixing in numerical models of mantle convection incorporating plate kinematics. J. Geophys. Res. 91, 6375–6395 (1986).
Chai, M., Brown, J. M. & Slutsky, L. J. Thermal diffusivity of mantle minerals. Phys. Chem. Minerals 23, 470–475 (1996).
Weber, M. & Davis, J. P. Evidence of a laterally variable lower mantle structure from P- and S-waves. Geophys. J. Int. 102, 231–255 (1990).
Earle, P. S. & Shearer, P. M. Observations of PKKP precursors used to estimate small-scale topography on the core-mantle boundary. Science 277, 667–670 (1997).
Yamada, A. & Nakanishi, I. Short-wavelength lateral variation of a D'’ P-wave reflector beneath the southwestern Pacific. Geophys. Res. Lett. 25, 4545–4548 (1998).
Thomas, C., Weber, M., Wicks, C. W. & Scherbaum, F. Small scatterers in the lower mantle observed at German broadband arrays. J. Geophys. Res. 104, 15073–15088 (1999).
Revenaugh, J. & Meyer, R. Seismic evidence of partial melt within a possibly ubiquitous low-velocity layer at the base of the mantle. Science 277, 670–673 (1997).
Garnero, E. J. & Helmberger, D. V. Further structural constraints and uncertainties of a thin laterally varying ultralow-velocity layer at the base of the mantle. J. Geophys. Res. 103, 12495–12509 (1998).
Kendall, J. M. & Silver, P. G. Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature 381, 409–412 (1996).
Su, W.-J. & Dziewonski, A. M. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter. 100, 135–156 (1997).
Grand, S. P., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: A snapshot of convection in the Earth. GSA Today 7, 1–7 (1997).
Pollack, H. N., Hurter, S. J. & Johnston, J. R. Heat flow from the Earth's interior—analysis of the global data set. Rev. Geophys. 31, 267–280 (1993).
Hart, S. R. & Zindler, A. In search of a bulk-Earth composition. Chem. Geol. 57, 247–267 (1986).
Jochum, K. P., Hofmann, A. W., Ito, E., Seufert, H. M. & White, W. M. K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature 306, 431–436 (1986).
Van Schmus, W. R. in Global Earth Physics: Handbook of Physical Constants Vol. 1 (ed. Ahrens, T. J.) 283–291 (Reference Shelf Series, American Geophysical Union, Washington DC, 1995).
Jackson, M. J. & Pollack, H. N. On the sensitivity of parameterized convection to the rate of decay of internal heat sources. J. Geophys. Res. 89, 10103–10108 (1984).
Christensen, U. Thermal evolution models for the Earth. J. Geophys. Res. 90, 2995–3007 (1985).
Rudnick, R. L. Making continental crust. Nature 378, 571–578 (1995).
Hofmann, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).
Kinzler, R. J. & Grove, T. L. Primary magmas of midocean ridge basalts. 2. Applications. J. Geophys. Res. 97, 6907–6926 (1992).
Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987).
Allègre, C. J. Chemical geodynamics. Tectonophysics 81, 109–132 (1982).
Chase, C. G. The n-plate problem of plate tectonics. Geophys. J. R. Astron. Soc. 29, 117–122 (1972).
Plank, T. & Langmuir, C. H. The geochemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998).
Blichert-Toft, J. & Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 149, 243–258 (1997).
Elliott, T., Zindler, A. & Bourdon, B. Exploring the kappa conundrum: the role of recycling in the lead isotope evolution of the mantle. Earth Planet. Sci. Lett. 169, 129–145 (1999).
Davies, G. F. Earth's neodymium budget and structure and evolution of the mantle. Nature 290, 208–213 (1981).
Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982).
Sleep, N. H. Gradual entrainment of a chemical layer at the base of the mantle by overlying convection. Geophys. J. Int. 95, 437–448 (1988).
Metcalfe, G., Bina, C. R. & Ottino, J. M. Kinematic considerations for mantle mixing. Geophys. Res. Lett. 22, 743–746 (1995).
Chernov, L. A. Wave Propagation in a Random Medium (Dover, New York, 1960).
Kornprobst, J. Le massif ultrabasique des Beni Bouchera (Rif Interne, Maroc): étude des péridotites de haute temperature et de haute pression, et des pyroxénites, à grenat ou sans grenat, qui leur sont associées. Contrib. Mineral. Petrol. 23, 283–322 (1969).
Nicolas, A., Bouchez, J. L. & Boudier, F. Interprétation cinématique des déformations plastiques dans le massif de lherzolite de Lanzo (Alpes Piémontaises)—comparaison avec d’autres massifs. Tectonophysics 14, 143–171 (1972).
Porcelli, D. & Wasserburg, G. J. Mass-transfer of helium, neon, argon, and xenon through a steady-state upper-mantle. Geochim. Cosmochim. Acta 59, 4921–4937 (1995).
O'Nions, R. K & Tolstikhin, I. N. Limits on the mass flux between lower and upper mantle and stability of layering. Earth Planet. Sci. Lett. 139, 213–222 (1996).
Broadhurst, C. L., Drake, M. J., Hagee, B. E. & Bernatowicz, T. J. Solubility and partitioning of Ar in anorthite, diopside, forsterite, spinel, and synthetic basaltic liquids. Geochim. Cosmochim. Acta 54, 299–309 (1990).
Rudnick, R. L., Barth, M., Horn, I. & McDonough, W. F. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science 287, 278–281 (2000).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Helffrich, G., Wood, B. The Earth's mantle. Nature 412, 501–507 (2001). https://doi.org/10.1038/35087500
Published:
Issue Date:
DOI: https://doi.org/10.1038/35087500
This article is cited by
-
Seismic evidence for a 1000 km mantle discontinuity under the Pacific
Nature Communications (2023)
-
Compositional heterogeneity in the mantle transition zone
Nature Reviews Earth & Environment (2022)
-
The influence of δ-(Al,Fe)OOH on seismic heterogeneities in Earth’s lower mantle
Scientific Reports (2021)
-
Peridotites, chromitites and diamonds in ophiolites
Nature Reviews Earth & Environment (2021)
-
New discovery of two seismite horizons challenges the Ries–Steinheim double-impact theory
Scientific Reports (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.