Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ubiquitination-dependent mechanisms regulate synaptic growth and function

Abstract

The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization1. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases2. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation3. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets4 leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire6, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuronal overexpression of fat facets leads to synaptic overgrowth.
Figure 2: Neuronal overexpression of fat facets impairs synaptic transmission.
Figure 3: Neuronal overexpression of the yeast deubiquitinating protease UBP2 phenocopies neuronal overexpression of faf.
Figure 4: Loss-of-function mutations in fat facets suppress highwire.

Similar content being viewed by others

References

  1. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    CAS  PubMed  Google Scholar 

  2. Wilkinson, K. D. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11, 1245–1256 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Huang, Y., Baker, R. T. & Fischer-Vize, J. A. Control of cell fate by a deubiquitinating enzyme encoded by the fat facets gene. Science 270, 1828–1831 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Baker, R. T., Tobias, J. W. & Varshavsky, A. Ubiquitin-specific proteases of Saccharomyces cerevisiae. Cloning of UBP2 and UBP3, and functional analysis of the UBP gene family. J. Biol. Chem. 267, 23364–23375 (1992).

    CAS  PubMed  Google Scholar 

  6. Wan, H. I. et al. Highwire regulates synaptic growth in Drosophila. Neuron 26, 313–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998).

    CAS  PubMed  Google Scholar 

  8. DiAntonio, A. & Schwarz, T. L. The effect on synaptic physiology of synaptotagmin mutants in Drosophila. Neuron 12, 909–920 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, Z., Li, Q., Fortini, M. E. & Fischer, J. A. Genetic analysis of the role of the Drosophila fat facets gene in the ubiquitin pathway. Dev. Genet. 25, 312–320 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Fischer-Vize, J. A., Rubin, G. M. & Lehmann, R. The fat facets gene is required for Drosophila eye and embryo development. Development 116, 985–1000 (1992).

    CAS  PubMed  Google Scholar 

  12. Chen, X. & Fischer, J. A. In vivo structure/function analysis of the Drosophila fat facets deubiquitinating enzyme gene. Genetics 156, 1829–1836 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Petersen, S. A., Fetter, R. D., Noordermeer, J. N., Goodman, C. S. & DiAntonio, A. Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19, 1237–1248 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. DiAntonio, A., Petersen, S. P., Heckmann, M. & Goodman, C. S. Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction. J. Neurosci. 19, 3023–3032 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Serdaroglu, P., Askanas, V. & Engel, W. K. Immunocytochemical localization of ubiquitin at human neuromuscular junctions. Neuropathol. Appl. Neurobiol. 18, 232–236 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Chapman, A. P., Smith, S. J., Rider, C. C. & Beesley, P. W. Multiple ubiquitin conjugates are present in rat brain synaptic membranes and postsynaptic densities. Neurosci. Lett. 168, 238–242 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Hegde, A. N. et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell 89, 115–126 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Jiang, Y. H. et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21, 799–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Yao, K. M. & White, K. Neural specificity of elav expression: defining a Drosophila promoter for directing expression to the nervous system. J. Neurochem. 63, 41–51 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  21. Schuster, C. M., Davis, G. W., Fetter, R. D. & Goodman, C. S. Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron 17, 641–654 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J. & Wu, C. F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol. A 175, 179–191 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Zito, K., Parnas, D., Fetter, R. D., Isacoff, E. Y. & Goodman, C. S. Watching a synapse grow: noninvasive confocal imaging of synaptic growth in Drosophila. Neuron 22, 719–729 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Fischer and K. Zinn for their gifts of reagents. This work was supported by the NIH and HHMI (C.S.G.), NSERC Canada (A.P.H.), and the Burroughs-Wellcome Career Award, HHMI, and Whitehall Foundation (A.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron DiAntonio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiAntonio, A., Haghighi, A., Portman, S. et al. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412, 449–452 (2001). https://doi.org/10.1038/35086595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35086595

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing