Abstract
Some insects have cultivated intimate relationships with mutualistic bacteria since their early evolutionary history. Most ancient ‘primary’ endosymbionts live within the cytoplasm of large, polyploid host cells of a specialized organ (bacteriome)1. Within their large, ovoid bacteriomes, mealybugs (Pseudococcidae) package the intracellular endosymbionts into ‘mucus-filled’ spheres, which surround the host cell nucleus and occupy most of the cytoplasm2. The genesis of symbiotic spheres has not been determined, and they are structurally unlike eukaryotic cell vesicles. Recent molecular phylogenetic and fluorescent in situ hybridization (FISH) studies suggested that two unrelated bacterial species may share individual host cells3,4, and that bacteria within spheres comprise these two species5. Here we show that mealybug host cells do indeed harbour both β- and γ-subdivision Proteobacteria, but they are not co-inhabitants of the spheres. Rather, we show that the symbiotic spheres themselves are β-proteobacterial cells. Thus, γ-Proteobacteria live symbiotically inside β-Proteobacteria. This is the first report, to our knowledge, of an intracellular symbiosis involving two species of bacteria.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The transcriptome of Icerya aegyptiaca (Hemiptera: Monophlebidae) and comparison with neococcoids reveal genetic clues of evolution in the scale insects
BMC Genomics Open Access 03 May 2023
-
On Holobionts, Holospecies, and Holoniches: the Role of Microbial Symbioses in Ecology and Evolution
Microbial Ecology Open Access 08 April 2022
-
Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae)
The ISME Journal Open Access 10 September 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Buchner, P. Endosymbiosis of Animals with Plant Microorganisms (Wiley, New York, 1965).
Fink, R. Morphologische und physiologische Untersuchungen an den intrazellularen Symbionten von Pseudococcus citri Risso. Z. Morph. Ökol. Tiere 41, 78–146 (1962).
Kantheti, P., Jayarama, K. S. & Sharat Chandra, H. Developmental analysis of a female-specific 16S rRNA gene from mycetome-associated endosymbionts of a mealybug, Planococcus lilacinus. Insect Biochem. Molecul. Biol. 26, 997–1009 (1996).
Munson, M. A., Baumann, P. & Moran, N. A. Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences. Mol. Phyl. Evol. 1, 26–30 (1992).
Fukatsu, T. & Nikoh, N. Endosymbiotic microbiota of the bamboo pseudococcid Antonina crawii (Insecta, Homoptera). Appl. Environ. Microbiol. 66, 643–650 (2000).
Houk, E. J. & Griffiths, G. W. Intracellular symbiotes of the Homoptera. Annu. Rev. Entomol. 25, 161–187 (1980).
Spaulding, A. W. & von Dohlen, C. D. Phylogenetic characterization and molecular evolution of bacterial endosymbionts in psyllids (Hemiptera: Sternorrhyncha). Mol. Biol. Evol. 15, 1506–1513 (1998).
Moran, N. A. & Telang, A. Bacteriocyte-associated symbionts of insects. Bioscience 48, 295–304 (1998).
Costa, H. S., Westcot, D. M., Ullman, D. E. & Johnson, M. W. Ultrastructure of the endosymbionts of the whitefly, Bemisia tabaci and Trialeurodes vaporariorum. Protoplasma 176, 106–115 (1993).
Baumann, P., Moran, N. A. & Baumann, L. in The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications (ed. Dworkin, M.) (Springer, New York, 2000).
Tremblay, E. in Insect Endocytobiosis: Morphology, Physiology, Genetics, Evolution (eds Schwemmler, W. & Gassner, G.) 145–173 (CRC Press, Boca Raton, 1989).
Louis, C. & Kuhl, G. Synthèse in situ de protéines chez les symbiotes et chez les mycétocytes de Pseudococcus obscurus (Coccidae-Pseudococcinae) en absence ou en présence d'inhibiteurs spécifiques. C.R. Acad. Sci. Paris D 274, 715–718 (1972).
Kohler, M. & Schwartz, W. Untersuchungen uber die Symbiose von Tieren mit Pilzen und Bakterien. Z. Allg. Mikro. 2, 190–208 (1962).
Louis, C. & Giannotti, J. Formation lysosomales et membranaires associees a des symbiotes et a des mycoplasmes endocellulaires d'insectes. Bull. Obs. Mer. 43–55 (1974).
Du, Y., Maslov, D. A. & Chang, K. Monophyletic origin of beta-division proteobacterial endosymbionts and their coevolution with insect trypanosomatid protozoa Blastocrithidia culcis and Crithidia spp. Proc. Natl Acad. Sci. USA 91, 8437–8441 (1994).
Douglas, A. E. Mycetocyte symbiosis in insects. Biol. Rev. 64, 409–434 (1989).
Smith, D. C. & Douglas, A. E. The Biology of Symbiosis (eds Willis, A. J. & Sleigh, M. A.) (Edward Arnold, London, 1987).
Moran, N. & Baumann, P. Phylogenetics of cytoplasmically inherited microorganisms of arthropods. Trends Ecol. Evol. 9, 15–20 (1994).
Andersson, S. G. E. & Kurland, C. G. Reductive evolution of resident genomes. Trends Microbiol. 6, 263–278 (1998).
Moran, N. A. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc. Natl Acad. Sci. USA 93, 2873–2878 (1996).
Wernegreen, J. J. & Moran, N. A. Evidence for genetic drift in endosymbionts (Buchnera): Analyses of protein-coding genes. Mol. Biol. Evol. 16, 83–97 (1999).
Spaulding, A. W. & von Dohlen, C. D. Psyllid endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA. Insect Mol. Biol. 10, 57–67 (2001).
Lambert, J. D. & Moran, N. A. Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria. Proc. Natl Acad. Sci. USA 95, 4458–4462 (1998).
Clark, M. A., Moran, N. A. & Baumann, P. Sequence evolution in bacterial endosymbionts having extreme base compositions. Mol. Biol. Evol. 16, 1586–1598 (1999).
Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81–86 (2000).
Komaki, K. & Ishikawa, H. Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium. J. Mol. Evol. 48, 717–722 (1999).
Van Ham, R. C. et al. Postsymbiotic plasmid acquisition and evolution of the repA1-replicon in Buchnera aphidicola. Proc. Natl Acad. Sci. USA 97, 10855–10860 (2000).
Sunnucks, P. & Hales, D. F. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol. 13, 510–524 (1996).
Ausubel, F. et al. eds Current Protocols in Molecular Biology (Wiley, New York, 1996).
Grünewald-Janho, S., Keesey, J., Leous, M., van Miltenburg, R. & Schroeder, C. (eds) Nonradioactive In situ Hybridization Application Manual (Boehringer Mannheim, Biochemica, Mannheim, 1996).
Acknowledgements
We thank D. Miller for mealybug identification, D. DeWald, H. Leary, K. Patch, G. Podgorski, J. Shope, A. Spaulding, J. Takemoto and N. Youssef for advice and/or technical help, and R. Andrus, C. Brammer, D. DeWald, K. Patch, E. Pilgrim, G. Podgorski, C. Rowe, L. Smith, and P. Wolf for reviewing the manuscript. This work was supported by a grant from the United States Department of Agriculture and by the Utah Agricultural Experiment Station.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
von Dohlen, C., Kohler, S., Alsop, S. et al. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412, 433–436 (2001). https://doi.org/10.1038/35086563
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/35086563
This article is cited by
-
The transcriptome of Icerya aegyptiaca (Hemiptera: Monophlebidae) and comparison with neococcoids reveal genetic clues of evolution in the scale insects
BMC Genomics (2023)
-
On Holobionts, Holospecies, and Holoniches: the Role of Microbial Symbioses in Ecology and Evolution
Microbial Ecology (2023)
-
Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae)
The ISME Journal (2022)
-
What are the major transitions?
Biology & Philosophy (2021)
-
Evaluation of natural endosymbiosis for progress towards artificial endosymbiosis
Symbiosis (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.