Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts

Abstract

Some insects have cultivated intimate relationships with mutualistic bacteria since their early evolutionary history. Most ancient ‘primary’ endosymbionts live within the cytoplasm of large, polyploid host cells of a specialized organ (bacteriome)1. Within their large, ovoid bacteriomes, mealybugs (Pseudococcidae) package the intracellular endosymbionts into ‘mucus-filled’ spheres, which surround the host cell nucleus and occupy most of the cytoplasm2. The genesis of symbiotic spheres has not been determined, and they are structurally unlike eukaryotic cell vesicles. Recent molecular phylogenetic and fluorescent in situ hybridization (FISH) studies suggested that two unrelated bacterial species may share individual host cells3,4, and that bacteria within spheres comprise these two species5. Here we show that mealybug host cells do indeed harbour both β- and γ-subdivision Proteobacteria, but they are not co-inhabitants of the spheres. Rather, we show that the symbiotic spheres themselves are β-proteobacterial cells. Thus, γ-Proteobacteria live symbiotically inside β-Proteobacteria. This is the first report, to our knowledge, of an intracellular symbiosis involving two species of bacteria.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Transmission electron micrographs showing structure within specialized host cells.
Figure 2: Laser-scanning confocal microscope images of FISH results with specific eubacterial probes on mealybug sections.
Figure 3: Stages in the transmission of symbiotic spheres to oocytes.

References

  1. Buchner, P. Endosymbiosis of Animals with Plant Microorganisms (Wiley, New York, 1965).

    Google Scholar 

  2. Fink, R. Morphologische und physiologische Untersuchungen an den intrazellularen Symbionten von Pseudococcus citri Risso. Z. Morph. Ökol. Tiere 41, 78–146 (1962).

    Article  Google Scholar 

  3. Kantheti, P., Jayarama, K. S. & Sharat Chandra, H. Developmental analysis of a female-specific 16S rRNA gene from mycetome-associated endosymbionts of a mealybug, Planococcus lilacinus. Insect Biochem. Molecul. Biol. 26, 997–1009 (1996).

    CAS  Article  Google Scholar 

  4. Munson, M. A., Baumann, P. & Moran, N. A. Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on 16S rDNA sequences. Mol. Phyl. Evol. 1, 26–30 (1992).

    CAS  Article  Google Scholar 

  5. Fukatsu, T. & Nikoh, N. Endosymbiotic microbiota of the bamboo pseudococcid Antonina crawii (Insecta, Homoptera). Appl. Environ. Microbiol. 66, 643–650 (2000).

    CAS  Article  Google Scholar 

  6. Houk, E. J. & Griffiths, G. W. Intracellular symbiotes of the Homoptera. Annu. Rev. Entomol. 25, 161–187 (1980).

    CAS  Article  Google Scholar 

  7. Spaulding, A. W. & von Dohlen, C. D. Phylogenetic characterization and molecular evolution of bacterial endosymbionts in psyllids (Hemiptera: Sternorrhyncha). Mol. Biol. Evol. 15, 1506–1513 (1998).

    CAS  Article  Google Scholar 

  8. Moran, N. A. & Telang, A. Bacteriocyte-associated symbionts of insects. Bioscience 48, 295–304 (1998).

    Article  Google Scholar 

  9. Costa, H. S., Westcot, D. M., Ullman, D. E. & Johnson, M. W. Ultrastructure of the endosymbionts of the whitefly, Bemisia tabaci and Trialeurodes vaporariorum. Protoplasma 176, 106–115 (1993).

    Article  Google Scholar 

  10. Baumann, P., Moran, N. A. & Baumann, L. in The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications (ed. Dworkin, M.) (Springer, New York, 2000).

    Google Scholar 

  11. Tremblay, E. in Insect Endocytobiosis: Morphology, Physiology, Genetics, Evolution (eds Schwemmler, W. & Gassner, G.) 145–173 (CRC Press, Boca Raton, 1989).

    Google Scholar 

  12. Louis, C. & Kuhl, G. Synthèse in situ de protéines chez les symbiotes et chez les mycétocytes de Pseudococcus obscurus (Coccidae-Pseudococcinae) en absence ou en présence d'inhibiteurs spécifiques. C.R. Acad. Sci. Paris D 274, 715–718 (1972).

    CAS  Google Scholar 

  13. Kohler, M. & Schwartz, W. Untersuchungen uber die Symbiose von Tieren mit Pilzen und Bakterien. Z. Allg. Mikro. 2, 190–208 (1962).

    Article  Google Scholar 

  14. Louis, C. & Giannotti, J. Formation lysosomales et membranaires associees a des symbiotes et a des mycoplasmes endocellulaires d'insectes. Bull. Obs. Mer. 43–55 (1974).

  15. Du, Y., Maslov, D. A. & Chang, K. Monophyletic origin of beta-division proteobacterial endosymbionts and their coevolution with insect trypanosomatid protozoa Blastocrithidia culcis and Crithidia spp. Proc. Natl Acad. Sci. USA 91, 8437–8441 (1994).

    ADS  CAS  Article  Google Scholar 

  16. Douglas, A. E. Mycetocyte symbiosis in insects. Biol. Rev. 64, 409–434 (1989).

    CAS  Article  Google Scholar 

  17. Smith, D. C. & Douglas, A. E. The Biology of Symbiosis (eds Willis, A. J. & Sleigh, M. A.) (Edward Arnold, London, 1987).

    Google Scholar 

  18. Moran, N. & Baumann, P. Phylogenetics of cytoplasmically inherited microorganisms of arthropods. Trends Ecol. Evol. 9, 15–20 (1994).

    CAS  Article  Google Scholar 

  19. Andersson, S. G. E. & Kurland, C. G. Reductive evolution of resident genomes. Trends Microbiol. 6, 263–278 (1998).

    CAS  Article  Google Scholar 

  20. Moran, N. A. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc. Natl Acad. Sci. USA 93, 2873–2878 (1996).

    ADS  CAS  Article  Google Scholar 

  21. Wernegreen, J. J. & Moran, N. A. Evidence for genetic drift in endosymbionts (Buchnera): Analyses of protein-coding genes. Mol. Biol. Evol. 16, 83–97 (1999).

    CAS  Article  Google Scholar 

  22. Spaulding, A. W. & von Dohlen, C. D. Psyllid endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA. Insect Mol. Biol. 10, 57–67 (2001).

    CAS  Article  Google Scholar 

  23. Lambert, J. D. & Moran, N. A. Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria. Proc. Natl Acad. Sci. USA 95, 4458–4462 (1998).

    ADS  CAS  Article  Google Scholar 

  24. Clark, M. A., Moran, N. A. & Baumann, P. Sequence evolution in bacterial endosymbionts having extreme base compositions. Mol. Biol. Evol. 16, 1586–1598 (1999).

    CAS  Article  Google Scholar 

  25. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81–86 (2000).

    ADS  CAS  Article  Google Scholar 

  26. Komaki, K. & Ishikawa, H. Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium. J. Mol. Evol. 48, 717–722 (1999).

    ADS  CAS  Article  Google Scholar 

  27. Van Ham, R. C. et al. Postsymbiotic plasmid acquisition and evolution of the repA1-replicon in Buchnera aphidicola. Proc. Natl Acad. Sci. USA 97, 10855–10860 (2000).

    ADS  CAS  Article  Google Scholar 

  28. Sunnucks, P. & Hales, D. F. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol. 13, 510–524 (1996).

    CAS  Article  Google Scholar 

  29. Ausubel, F. et al. eds Current Protocols in Molecular Biology (Wiley, New York, 1996).

    Google Scholar 

  30. Grünewald-Janho, S., Keesey, J., Leous, M., van Miltenburg, R. & Schroeder, C. (eds) Nonradioactive In situ Hybridization Application Manual (Boehringer Mannheim, Biochemica, Mannheim, 1996).

    Google Scholar 

Download references

Acknowledgements

We thank D. Miller for mealybug identification, D. DeWald, H. Leary, K. Patch, G. Podgorski, J. Shope, A. Spaulding, J. Takemoto and N. Youssef for advice and/or technical help, and R. Andrus, C. Brammer, D. DeWald, K. Patch, E. Pilgrim, G. Podgorski, C. Rowe, L. Smith, and P. Wolf for reviewing the manuscript. This work was supported by a grant from the United States Department of Agriculture and by the Utah Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol D. von Dohlen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

von Dohlen, C., Kohler, S., Alsop, S. et al. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412, 433–436 (2001). https://doi.org/10.1038/35086563

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35086563

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing